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for any CMOS neural amplifier using a differential input pair [9], 
which can be moderately reduced through reference branch-sharing 
in multi-channel designs [7]. Thus, the power-noise tradeoff in 
CMOS neural amplifiers inherently limits the design of large-scale 
multi-channel biosignal acquisition systems.  

3. TFETS FOR NEURAL RECORDING 
APPLICATIONS 
3.1 TFET Technology: Advantages of Power-
Noise Tradeoff in Neural Amplifier Designs 
The fundamental limit of gm/IDS in CMOS originates from the 
thermal energy slope of kBT, which results in an over 60 mV/dec SS. 
In TFETs, the interband tunneling induced carrier injection 
mechanism overcomes the thermal energy limit, leading to a sub-60 
mV/dec SS. Thus, an improvement of gm/IDS can be achieved in 
TFETs with SS reduction (Eq. (5)). ݃ܫௌ = ௌ߲ܸீܫ߲ ௌ ௌܫ1 = ௌ߲ܸீܫ݈߲݊ ௌ = ݈݊10	߲ log ௌ߲ܸீܫ ௌ = ݈݊10SS = κܸ௧ 				(5) 
In this work, we apply the calibrated GaSb-InAs heterojunction 
TFET (HTFET) models (Fig. 3a-e) reported in [17], which are 
based on a double-gate device structure with Lg = 20 nm. The 
device characteristics of gm/IDS vs. IDS and gm/IDS vs. VGS are shown 
in Fig. 4, comparing HTFETs and Si FinFETs. The improved gm/IDS 
at low voltage and low IDS provides following advantages in 
HTFET-based neural amplifier design: 

1) Avoiding Gm,OTA degradation at low bias current (IDS). A high 
Gm,OTA can ensure a low-noise stable operation of an amplifier. At 
severely scaled IDS, the high gm/IDS of HTFETs can significantly 
improve gm,input compared to Si FinFETs. Hence, a desired Gm,OTA 

can be maintained without increasing the circuit complexity using 
HTFETs. 

2) Reducing ࢜ଙ,ࢀࡻതതതതതതതതത  with high gm,input and gm,input/gm,load ratio at 
low IDS. The steep SS leads to a reduced bias voltage difference to 
obtain a high gm,input/gm,load ratio. For example, one order magnitude 
change of gm/IDS is achieved within a 0.2 V window (Fig. 4a), which 
reduces the overdrive voltage and hence is suitable for low VDD 

operation.  

3) Enabling VDD scaling to reduce the power consumption 
(VDD∙IOTA) benefitted from the low-VDD operation of HTFETs. 

4) Reducing the NEF by suppressing the thermal energy slope. 
A steep SS in TFET results in κ>1. Substituting (5) into (4), the 
minimum NEF of a TFET neural amplifier (NEFTFET,min) is lower 
than the CMOS limit (NEFCMOS,min): ܰܨܧ ≈ ටூೀಲூವೄ ቀச∙∙,ೠூವೄ ቁൗ = ଵசටூೀಲூವೄ = ௌௌଵ ටூೀಲூವೄ 	          (6) 

ிா்,்ܨܧܰ  = ெைௌ,ܨܧܰ ∙ ௌௌಷಶ,ೠ	ೌೝௌௌಾೀೄ,ೠ	ೌೝ                (7) 
 

where SSTFET,input pair and SSCMOS,input pair stand for the SS of the input 
pair of the TFET OTA and Si FinFET OTA, respectively. 

3.2 HTFET Noise Modeling and Circuit 
Simulation Setup 
To design the HTFET neural amplifier, we apply the calibrated 
Verilog-A device models incorporated with the electrical noise 
model [17] for HTFETs, and compare the results with the baseline 
Si FinFET design. The electrical noise model is derived from 
experimentally validated analytical models, which includes thermal, 
shot noise and low frequency flicker noise. (The random telegraph 
noise (RTN) is omitted due to the large transistor gate area in our 
design.) The modeled noise characteristics comparing HTFETs and 
Si FinFETs are shown in Fig. 5, where HTFETs exhibit a 
competitive input-referred noise in the kHz and MHz range 
compared to Si FinFETs at an operation voltage of 0.3 V. The 
circuit simulation is performed using Cadence Spectre [19]. 

 
Figure 4. gm/IDS characteristics comparison of HTFETs (a, b) 

and Si FinFETs (c, d). The device models are from [17]. 
 

Figure 5. Electrical noise Verilog-A modeling and input- 
referred noise comparison [17]. 
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4. HTFET BASED ULTRA-LOW-POWER, 
LOW-NOISE OTA  
 

4.1 HTFET-Based Telescopic OTA 
A modified telescopic OTA topology, inspired from [7] is employed 
by the HTFET-based OTA (Fig. 6), which utilizes a partial OTA 
sharing architecture for multi-channel recording. A N-HTFET input 
pair is used due to its steeper SS (Fig. 3c-d) induced larger gm/IDS. 
Cascoded M3-M6 are used as gain booster without increasing the 
input-referred noise-level. Table 1 shows the bias conditions of each 
transistor in the HTFET OTA. The bias current is 10 nA at VDD=0.5 
V, providing a 5 nA bias current for M1-M8. As discussed in Section 
2, to maximize the gm1,2 of the input differential pair M1,2, a large 
W/L ratio is used to achieve high gm/IDS. Similar to the reported 
CMOS designs [4-9], a large gate-area (WxL) is used to reduce the 
flicker noise contribution. For M7,8, on the other hand, a minimized 
W/L is applied to bias the device into strong inversion with small 
gm/IDS, which increases the ratio of gm1,2/gm7,8 and reduces the 
thermal noise contribution of M7,8. Since the cascoded M3-M6 have 
a negligible contribution to the total input-referred noise, the choice 
of the sizing for these transistors is based on gain requirement. The 
balance of the output resistance and intrinsic gain is carefully 
considered for M3-M6. As a result, a high gm/IDS of 253 V-1 is 
obtained for M1,2, while a gm/IDS of 35 V-1 is used for M7,8, resulting 
g m 1 , 2 / g m 7 , 8  ≈ 7 . 2 .  

For performance comparison, we design a Si FinFET OTA as a 
baseline with a similar topology and bias current (10 nA). A supply 
voltage of 1 V is required in Si FinFET OTA due to the overdrive 
voltage requirement of the stacked devices. Similarly, M1,2 operate 
in subthreshold regime while M7,8 are biased in strong inversion 
regime, using the sizes presented in Table 2. However, due to the 
limited gm/IDS and diminished overdrive voltage, gm1,2 and the ratio 
of gm1,2/gm7,8 (≈3) are significantly decreased at such low-power 
level, which is detrimental to noise performance. Performance 
Analysis 

Fig. 7a shows the HTFET OTA gain vs frequency for a single 
channel compared to the baseline Si FinFET OTA. Benefiting from 

its high gm/IDS and the cascoding technique, an open-loop gain of 50 
dB is achieved in the HTFET OTA at VDD=0.5 V, whereas the Si 
FinFET OTA shows a degraded gain of 37 dB at VDD=1 V due to 
extremely limited bias current. The output noise spectrum vs 
frequency is shown in Fig.7b-c, where the thermal noise dominates 
the flicker noise which is suppressed owing to the large gate-area of 
the input pair. 

The dominant noise contributor of each transistor and its 
contribution to the overall input-referred noise is shown in Fig. 8. In 
the Si FinFET OTA, M7,8 contribute to a significant portion of the 
overall input-referred noise due to the degradation of gm1,2 and 
gm1,2/gm7,8. In contrast, an effective suppression of the thermal noise 
contribution from M7,8 is achieved in the HTFET OTA, given its 
high gm/IDS. The desired open-loop gain, ultra-low power and 
competitive noise performance achieved by the HTFET telescopic 
OTA confirm its advantage for neural amplifier design. 

5. THE HTFET NEURAL AMPLIFIER FOR 
MULTI-CHANNEL BIOSIGNAL 
RECORDING 
5.1 Closed-loop HTFET Neural Amplifier 
Using the capacitive feedback topology, we implement the closed-
loop HTFET neural amplifier based on the proposed telescopic 
OTA (Fig. 9). To further eliminate the redundant dc bias circuitry, 
we use the dc output voltage of the OTA (Vout,dc) to bias the 
common voltage (Vcommon) of the input signal through the resistive 

Figure 6. HTFET based telescopic OTA design with sharing 
architecture for multi-channel recording.  
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[mV]
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M5,6 8/0.2 28.55 -68.4 -68.4

M7,8 0.1/80 9.8 -423 -492
M9,10 2/2 27 209 205

Table 1. Transistor Sizing of the 
HTFET Telescopic OTA 

Table 2. Transistor Sizing of the Si 
FinFET Telescopic OTA 

 
Figure 7. Voltage gain (a) and output noise vs. frequency (b-c) 

of HTFET and Si FinFET OTAs. 
 

 
Figure 8. Noise contribution of each transistor to the overall 

input-referred noise from 10Hz to 1 kHz. 
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divider network (Rb) at Vcommon=Vout. In the OTA simulation, the 
common dc voltage of the input signal, Vin,dc, is set to 1/2Vout,dc. 
Hence, by setting Rb=R, the input signal can be biased at 1/2Vout,dc. 
A diode-connected Si FinFET as in [1, 4-10] is used to construct the 
pseudo-resistor Rb and R for the Si FinFET neural amplifier, where 
a W/L of 0.2 µm/8 µm is used for Ma1-2 (Fig. 9b). For the HTFET 
neural amplifier, shorted source-gate connections [16] can be 
applied by taking advantage of the asymmetrical source/drain 
characteristic, while an additional conduction path through Ma3-4 

(Fig. 9a) is required due to the uni-directional characteristics. A W/L 
of 0.2 µm/6 µm is applied to Ma1-4 in the HTFET neural amplifier. 
The values of the capacitors are selected as C2 = 500 fF, and C1/C2 

=100 to provide a 40 dB mid-band gain. CL is varied from 500 fF to 
2 pF to tune the pass band of the amplifier. For the Si FinFET 
neural amplifier, C2=500 fF and C1/C2 = 50 are used, due to the 
degraded open-loop gain.  

5.2 Voltage Gain and Noise Performance  
The gain and output noise vs. frequency characteristics are shown in 
Fig. 10, comparing HTFET and Si FinFET neural amplifier designs 
at different load capacitor conditions (fH decreases as CL increases). 
A midband gain of 39.4 dB is achieved in the HTFET neural 
amplifier, as compared to 28.1 dB in the Si FinFET neural 
amplifier. This gain advantage of the HTFET neural amplifier arises 
from the improved gm originating from the steep SS induced high 
gm/IDS. The output thermal noise spectrum exhibits similar 
characteristics as in Fig. 2c, for both Si FinFET and HTFET neural 
amplifiers. For a frequency range below 10 Hz, the noise 
contribution from the pseudo-resistor dominates the overall output 
noise, while the thermal noise of the OTA dominates the frequency 
range between fL and fH. As discussed in Section 2, the low cutoff 
frequency fL is determined by R and C2, while C1/C2 is constant. 
Thus, the bandwidth of the designed neural amplifier can be tuned 
by varying R (Rb) and C2 to satisfy the operational bandwidth 
requirement in different application domains. 

5.3 Power-Noise Tradeoff 
The input-referred noise spectrum for HTFET and Si FinFET neural 
amplifiers are shown in Fig. 11a. At the same Ibias of 10 nA, the 
HTFET neural amplifier exhibits over 4 times reduction of the 
input-referred noise within the pass band compared to the Si 
FinFET neural amplifier. Moreover, reducing the input-referred 
noise of the Si FinFET neural amplifier can only be achieved by 
degrading its power performance. When increasing Ibias by 4 times 
(40 nA) and 16 times (160 nA) while increasing all the transistor 
widths accordingly (4 times at Ibias= 40 nA, 16 times at Ibias=160 
nA), the input-referred noise of the Si FinFET neural amplifier is 
reduced by 2 times and 4 times, respectively. Such noise reduction 
is due to the increased gm1,2 of the OTA at a fixed gm/IDS (at a 
constant NEF). The Si FinFET neural amplifier shows comparable 
input-referred noise at Ibias=160 nA and VDD=1 V as the HTFET 
neural amplifier at Ibias=10 nA and VDD=0.5 V. Hence, an 
approximate 32 times power reduction over the Si FinFET design is 

achieved in the HTFET neural amplifier, considering the design 
target to obtain the same input-referred noise level.  

The performance metrics of the HTFET and Si FinFET neural 
amplifiers at CL= 2 pF and Ibias=10 nA are summarized in Table 3 
and compared with other designs [8, 16]. A bandwidth of 12 Hz (fL) 
to 2.1 kHz (fH) and power consumption of 5 nW are achieved in the 
HTFET design with an input-referred noise of 6.27 µVrms 
integrated over 10 Hz to 1 kHz, which is close to the estimated 
minimum ݒ,௦  of 5.26 µVrms achieved by an ideal OTA at CL=2 
pF and AM=40 dB [1]. The Si FinFET neural amplifier, however, 
shows a bandwidth from 4 Hz to 529 Hz at the same Ibias (10 nA), 
while fH is degraded due to the limited gm. The increased ݒ,௦ at 
nanowatt power levels imposes inevitable drawbacks on practical 
applications of the Si FinFET amplifier. Both CMRR and PSRR are 
improved in the HTFET amplifier compared to the Si FinFET 
design. A competitive linearity performance of the HTFET and Si 
FinFET amplifiers, indicated by the total harmonic distortion 
(THD), is also achieved (compared to Si FinFET, the impact of Ids-
Vgs non-linearity in HTFET is compensated by the stable operation 
bias at low-VDD). For a single-channel, the total transistor area of 
259.2 µm2 is achieved in HTFET amplifier compared to 452 µm2 in 
Si FinFET amplifier. 

Compared to the reported CMOS designs [4, 6, 8, 9], the HTFET 
neural amplifier exhibits superior power-noise performance (Fig. 

Figure 9. Closed-loop neural amplifier topology and pseudo 
resistor schematics. 
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Figure 10. Si FinFET(a, c) and HTFET(b, d) neural amplifier 

gain vs. frequency and output noise vs. frequency. 
 

Figure 11. (a) Input referred noise spectrum for HTFET and 
Si FinFET neural amplifiers and (b) Supply current vs. 

vin,rms/√bandwidth for NEF benchmarking. 
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11b). A NEF of 0.64 (Table 3) is obtained in the HTFET neural 
amplifier owing to the steep SS, which outperforms the NEF of 5.18 
in the baseline Si FinFET design. This low NEF achieved by the 
HTFET design also outperforms the optimal NEF for both CMOS 
(NEFmin =2.02) and Bipolar (NEFmin=1) based designs. Moreover, 
the new HTFET neural amplifier shows significant gain 
improvement compared to the SiGe TFET design in [16], benefiting 
from the cascaded transistors and steeper SS of III-V HTFETs. The 
telescopic OTA topology employed by our design is also known to 
be more power-noise efficient [7, 8] compared to the symmetrical 
current-mirror OTA topology in [16]. The comparison of the noise 
performance cannot be applied here because of the different 
assumption of the Fano factor for shot noise and neglecting of the 
thermal and flicker noise in [16]. 

6. CONCLUTIONS 
In this paper, we investigate the unique device characteristics of 
steep slope HTFET for multi-channel biosignal acquisition. By 
exploring the high gm/IDS characteristics, we propose a new HTFET 
neural amplifier design using a shared telescopic OTA topology to 
enable a nanowatt power-level operation, which also provides a 
voltage gain improvement and noise reduction compared to the Si 
FinFET-based design. Using a comprehensive noise model, we 
analyze the power-noise tradeoff in HTFET neural amplifier 
designs, which highlights advantages of the steep SS and low-VDD 
operation for mitigating the aggravated thermal noise limit from the 
power reduction. At a highly downscaled bias current of 10 nA and 
supply voltage of 0.5 V, our proposed HTFET neural amplifier 
design exhibits a midband gain of 40 dB, a -3dB bandwidth from 12 
Hz to 2.1 kHz, and an approximate 32 times power reduction over 
the baseline Si FinFET design to achieve the same input-referred 
noise level. The performance evaluation further reveals the superior 
power-noise efficiency of the HTFET-based design, including a 
NEF of 0.64 significant lower than the theoretical NEF limits using 
CMOS or Bipolar technologies. The remarkable performance 

improvement and desired power-noise tradeoff confirm the 
advantages of HTFET technology to overcome the CMOS 
technology barrier for multi-channel biosignal acquisition system 
applications. 
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Table 3. Performance Comparison with Other Simulation 
Works 

 

HTFET 
Amplifier 

 (this work) 

FinFET 
Amplifier 

(this work) 

Shoaran  
2012 [8] 

Trivedi  
2013 [16] 

Technology 
20 nm 

HTFET 
20 nm Si 
FinFET 

.18 µm 
CMOS 

90 nm SiGe 
TFET 

Bias 
Current 

10 nA 10 nA 2.84 µA ~3 nA 

Supply 
Voltage 

0.5 V 1 V 1.8 V 1 V 

Power 5 nW 10 nW 5.11 µW 3.6 nW 

Closed-loop 
Gain 

39.4 dB 28.1 dB 39.9 dB 27.7 dB 

Bandwidth 
(fL-fH) 

12 Hz-2.1 
kHz 

(CL=2 pF) 

4 Hz-529 Hz 
(CL=2 pF) 

30Hz-2.5kHz
(tunable) 

0.036 Hz-3.2 
kHz 

(N/A) 

Input-
Referred 

Noise 

6.27µVrms 
(10Hz - 
1kHz) 

29.7µVrms* 
(10Hz- 
1kHz) 

1.30 µVrms 
(1Hz-

100kHz) 

3.1 µVrms**
(N/A) 

CMRR 56 dB 42 dB 78 dB 64 dB 

PSRR 70 dB 58 dB 57 dB 55 dB 

THD 
0.69%  

(2 mVp-p) 
0.67%  

(2 mVp-p) 
- - 

NEF 0.64 5.2 1.94 - 
*At Ibias=160 nA, the integrated input-referred noise of the Si FinFET 
neural amplifier from 10Hz to 1kHz is 6.99 µVrms with corresponding 
16x increase of transistor width. ** Tunnel diode shot noise model with 
a fano factor of 1 were used for [16] with thermal noise neglected. 
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