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Abstract 

This work presents a detailed study of the g
er, comparing ambipolar and drain mixing f
Output characteristics of the graphene transi
and the effects of device scaling and interfac
mixer performance are explained.  We desig
transistor with gate length 750 nm, width 20
lent oxide thickness (EOT) ~2.5 nm to ach
conversion gain of -14 and -16 dB at LO pow
and 10 GHz, respectively, 100x higher tha
ported ambipolar mixing. 

Introduction 

In recent years, graphene has gained intere
electronic devices due to its high carrier mo
electron and hole conduction, and ambipolar
unique properties have allowed for novel 
including a single transistor triple-mode am
single transistor ambipolar mixer [2].  For 
graphene’s ambipolar nature (Fig. 1a) allow
of odd order harmonics at the Dirac point
conversion gain, where small signal outpu
given as:  
 +′′+′+= 6/2/ gsmgsmgsmds vgvgvgi

Suppression of odd order harmonics is a resu

both vanishing at the Dirac point, while g

              (a)   
Figure 1. Ambipolar conduction leads to high conversi
sion of odd order mixing products at transistor output. 
graphene FET showing ambipolar behavior.  (b) Extrac
third order components of drain current showing peak

mum   mg  and mg ′′  at the Dirac point. 
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RF applications, 

mplifier [1] and a 
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mg ′  experiences a 

maximum (Fig. 1b).  Additionally, 
designs have also been implement
and drain mixing [4].  Although in
been successful, performance has b
tact resistance, low mobility, and lo
analyzing the DC/RF output charac
transistor, we identify the key area
formance, leading to record high con

Synthesis, Materials, an

Graphene is prepared on (0001) orie
SiC through combination of sublim
calation leading to carrier mobi
cm2/V·sec at 1013 cm-2.  Sublimat
1625°C in 1 Torr Ar, while hydroge
1050°C in 600 Torr Ar/H2, produci
phene across the hydrogen passivate
intercalation is a key step in maintai
for epitaxial graphene.  Graphene t
using standard photolithographic
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100 ohm-ȝm.  Gate dielectrics w
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where [6].  For the gate dielectr
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~2.5 nm while maintaining unifor
significantly degrading transport pro
 

      (a)    

Figure 2.  (a) False color SEM micrograph o
sistor with T-gates.  (b) Schematic cross-sec
Lg=750nm and W=20ȝm.  10nm HfO2 gate o
ALD as described elsewhere [6]. 
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Graphene FET Performance 

DC characteristics of HfO2 gated transistors display on-off 
ratios >2 and demonstrate excellent drive current of 1.1 
mA/ȝm at Vds= -1V (Fig. 3a,b).  Peak transconductance is 
found to be 330 ȝS/ȝm (Fig. 3c), which is attributed to the 
relatively small EOT for these devices (~2.5 nm) as well as 
the high mobility of the hydrogen passivated epitaxial gra-
phene.  RF performance is excellent, exhibiting peak intrinsic 
current gain cutoff frequency (fT) of 110 GHz at a gate length 
of 75 nm with Vds= -1V, where intrinsic fT was extracted from 
measured S-parameters using a standard short-open de-embed 
process to remove the effect of probe and pad parasitics.  
Intrinsic fT is found proportional to the inverse of Lg, although 
extrinsic performance is limited by parasitics at small gate 
lengths.  Still, we report an excellent peak extrinsic fT·Lg ~5 
GHz·ȝm (Fig. 4b).  Effective injection velocity between 1.1 
and 2.5x107 cm/sec (Fig. 4d) is extracted from the small sig-
nal parameters as a function of Lg.  Third-order intermodula-
tion is characterized using two-tone measurements at 4 and 
4.2 GHz, giving a third-order intermodulation intercept (TOI) 
of 17.5 dBm. (Fig. 5a).  TOI as a function of DC dissipated 
power shows that graphene devices are competitive with con-
ventional semiconductor devices (Fig. 5b). 

Mixer Performance 

Ambipolar mixing is achieved through gate mixing of the LO 
and RF input signals (Fig. 6a).  The LO and RF inputs of 4.2 
(10) and 4 (9.8) GHz, respectively, were combined using an 
external power combiner.  A plot of mg ′  versus Vgs and Vds 
identifies the Dirac point as the optimal bias point for maxi-
mum conversion gain (Fig. 6b) due to the fact that mIF gP ′∝ .  
Fig. 5c shows the output spectrum at the Dirac point for LO 
power 0 dBm and RF power -15 dBm, displaying record con-
version gain of -14 (-16) dB.  Mixer performance was eva-

              (a)     (b) 

 
          (c)                    (d) 

Figure 3.  (a) Transfer curves (Ids-Vgs) from Vds=50mV to 1V exhibiting VDirac

near Vgs=0V and near symmetric electron and hole branches.  (b) Family of 
curves (Ids-Vds) from Vgs=0 to -3V showing weak saturation behavior.  (c),(d)
Color maps of absolute transconductance (gm) and output conductance (gd) as 
a function of drain bias (Vds) and gate bias (Vgs) indicating a peak transcon-
ductance of 330 ȝS/ȝm. 
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              (a)     (b) 
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Figure 4.  (a) Short circuit current gain and unilateral power gain of graphene
transistor at Vds=-1V and Vgs=1.5V.  Intrinsic values are extracted using a 
short-open de-embed process in order to remove probe and pad parasitics. 
(b) Intrinsic and extrinsic fT as a function of gate length, showing increasing 
effect of parasitics on extrinsic device performance as well as the expected 
dependency of fT on Lg.  (c) Measured and simulated S-parameters for 
Lg=750nm device showing excellent fit.  (d) Extracted effective velocity as a 
function of gate length. 
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              (a)         (b) 
Figure 5.  Graphene transistors exhibit excellent linearity compared to con-
ventional transistors.  (a) Plot showing the dependency of the third order
intercept on gate bias.  (b) TOI versus DC dissipated power, showing gra-
phene FET approaching (OIP3>10*Dissipated Power). 
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luated as a function of gate bias showing suppression of odd 
order harmonics at the Dirac point as well as confirming peak 
conversion gain at the Dirac point.  As a comparison, drain 
mixing was also considered (Fig. 7a), where: 

!+++= dsgsdmdsdgsmds vvggvgvgi  

A plot of )( 2
dsgsdsdm VVIgg ∂∂∂=  versus Vgs and Vds 

identifies Vds=0V as the optimal bias conditions for drain 
mixing (resistive mixing) due to the fact that dmIF ggP ∝  
(Fig. 7b).  A conversion gain of -18.5 dB is observed at LO 

power 0 dBm at 4.2GHz and RF at 4 GHz (Fig. 7c), while a 
sweep in Vgs confirms the lack of suppression of odd order 
harmonics (Fig. 7d). 
The effect of interface state density (Dit) and scaled EOT 
were also considered.  Fig. 8a shows the effect of increased 
Dit on the transfer characteristics (Ids-Vgs), leading to spread 
in the V-shaped output and, subsequently, reduction in mg ′  as 

well as. dm gg  Conversion gain is improved by reducing Dit 
or, alternatively, by scaling EOT to smaller thicknesses (Fig. 
8b). 

Benchmark 

Conversion gain as a function of LO power shows linear per-
formance up to 0 dBm for both ambipolar and resistive drain 
mixing (Fig. 9).  This work represents the highest perfor-
mance graphene based mixer yet reported and, furthermore, 
utilizes the smallest physical width (20ȝm) of all reported 
graphene mixers, where increased width is expected to show 
increased conversion gain.  The excellent performance is at-
tributed to highly scaled EOT, high mobility, and low contact 
resistances (Table 1). 

              (a)         (b) 
Figure 8.  Reduction of interface states and EOT can lead to improved con-
version gain.  (a) Effect of Dit on transfer characteristics of graphene transis-
tor showing spread in the V-shaped output and, subsequently, reduction in

mg ′  and dm gg .  (b) Plot of conversion gain versus Dit for three separate
values of EOT (simulation does not account for parasitics). 
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              (c)        (d) 

Figure 6.  Peak conversion gain is achieved using ambipolar mixing at the
gate terminal.  (a) Measurement setup for ambipolar graphene mixer.  (b)
Measured mg ′  ( mIF gP ′∝ ) as function of Vgs and Vds shows peak mg ′ and 
indicates that maximum conversion gain should occur at the Dirac point.  (c) 
Output spectrum for graphene ambipolar mixer, showing first, second, and
third order mixing products as well as record high conversion gain of -14 dB 
at LO 0 dBm.  (d) Measured output spectrum as a function of Vgs shows 
suppression of odd order harmonics and confirms peak conversion gain at the
Dirac point. 

VD

Sp
ec

tr
um

 

On 
Wafer

Bias Tee

GFET

Drain
Gate

Source

Bias Tee

VG

Z L
=5

0ɏ
vLO

Z L
O
(5

0ɏ
)

LO

vRF

Z
RF (50ɏ

)

RF

A
na

ly
ze

r

External 
Combiner

-3 -2 -1 0 1 2 3
-1.0

-0.8

-0.6

-0.4

-0.2

0.3

0.4

0.5

0.6

 

 

V ds
 [V

]
Vgs [V]

|Gm2| [mS/V/µm]

0.1

0.2
Peak conversion gain 
for ambipolar mixer

0 2 4 6 8 10
-80
-70
-60
-50
-40
-30
-20
-10

0

Lg  :750nm
Vgs:0V, Vds:-1V PLO:   0dBm

PRF:-15dBm

2LO-2RF

3LO-RF

2LO-RF2RF-LO

IF=LO-RF
LO+RF

2RF

2LO

RF

O
ut

pu
t P

ow
er

 [d
B

m
]

Frequency [GHz]

LO

1st (LO)

1st (RF)

2nd (IF)

3rd

-2 -1 0 1 2
-80
-70
-60
-50
-40
-30
-20
-10

O
ut

pu
t S

pe
ct

ru
m

 [d
B

m
]

Gate Bias [V]

Vds: -1 V
Lg: 750 nm

Noise Floor

PLO=-15dBm @ 4.2GHz
PRF=-15dBm @ 4.0GHz

              (a)   (b) 

              (c)        (d) 

Figure 7.  Resistive drain mixing is an alternative to ambipolar gate mixing, 
but does not suppress odd ordered harmonics.  (a) Measurement setup.  (b) 
Measured dm gg  ( dmIF ggP ∝ ) as function of Vgs and Vgd indicating peak 
values near Vds=0V, thus resistive mixing with Vds=0V should produce the 
highest conversion gain.  (c) Output spectrum for graphene mixer, showing
first, second, and third order mixing products and conversion gain of -
18.5dB.  (d) Measured output spectrum at Vds=0V as a function of Vgs, show-
ing no suppression of odd order output products as occurs for the ambipolar 
gate mixing case. 
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Conclusions 

In conclusion, hydrogen intercalated graphene transistors 
with highly scaled EOT were used to demonstrate record high 
conversion gain for a single graphene transistor ambipolar 
mixer, achieving a small circuit footprint.  Ambipolar gate 
mixing was shown to suppress odd order harmonics and was 
found to outperform resistive drain mixing.  Increased per-
formance is anticipated through further reducing Dit and scal-
ing EOT, indicating that the graphene based ambipolar mixer 
may soon become competitive with conventional Gilbert cell 
mixers. 
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Figure 9.  Record high conversion gain of -14dB for graphene based device at 4GHz demonstrated using ambipolar gate mixing and gate width of only
20ȝm.  (a) Conversion gain versus LO power showing higher conversion gain for ambipolar gate mixing as compared to resistive drain mixing.
(b) Conversion gain versus frequency showing operation up to 10GHz.  High frequency and high gain mixer performance in this work is attributed to highly 
scaled EOT, high mobility, and low contact resistance compared to other graphene based mixers (Table 1). 
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TABLE I 
Conversion gain benchmark parameters 
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# of 
FETs Lg [ʅm] W [ʅm] 

tox  

[seed/oxide nm] 
Peak gm 
[ʅS/ʅm] Vgs [V] Vds [V] 

Rcon 
[ɏ·ʅm] 

This Work (Ambipolar) 1 0.75 20 2/10 (HfO2) 330 0 -1 100  
This Work (Resist/Drain) 1 0.75 20 2/10 (HfO2) 330 -0.5 0 100 
[1] Wang et al, DOI:  
10.1109/LED.2010.2052017 

1 2.0 150 5/25 (SiO2/Al2O3) 5.5 -0.2 -- 2-5k 

[2] Lin et al, DOI:  
10.1126/science.1204428 

1 0.55 30 2/20 (Al2O3) 80 -3 2 600 

[3] Habibpour et al, DOI:  
10.1109/LED.2011.2170655 

1 1 20 2/25 (Al2O3) 35[0.1V] 1 0 560 

[4] Tsai et al, DOI:  
10.1109/LMWC.2007.892934 

10 -- -- -- -- -- -- -- 

[5] Emami et al, DOI:  
10.1109/RFIC.2005.1489619 

2 0.13 80 -- -- -- -- -- 
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