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Abstract— This paper studies the application of tunnel
FET (TFET) in designing a low power and robust cellular neural
network (CNN)-based associative memory (AM). The lower
leakage, steeper switching slope, and higher output resistance of
TFET are exploited in designing an ultralow-power TFET-based
operational transconductance amplifier (OTA). A TFET-OTA is
utilized as a programmable synaptic weight multiplier for CNN.
The ultralow-power of TFET-OTA enables a higher connectivity
network even at a lower power, and thereby improves the memory
capacity and input pattern noise tolerance of CNN-AM for low
power applications. The TFET-based higher connectivity CNN
also exploits the unique characteristics of TFET to improve the
throughput efficiency of CNN-AM.

Index Terms— Associative memory (AM), cellular neural
network (CNN), tunnel FET (TFET), ultralow-power computing.

I. INTRODUCTION

THE Hopfield associative memory (AM) [1] provides a
computation paradigm based on collective computing by

a large number of equivalent computing elements interfaced
by programmable interconnects. The unique ability of AM is
to remember the relationship between two patterns as shown
in Fig. 1(a). Applications of AM have been investigated in
solving problems, such as character/face recognition, pattern
classification, database search, and understanding/replicating
cerebral activities as listed in Table I [2]–[5]. While
performance requirement for the problems such as recognition
and classification are moderate, an ultralow power of AM
can enable solving these complex problems in a low power
platform, such as a mobile system-on-a-chip. Ultimately,
an ultralow-power of AM can also enable an ambitious goal
of a very large scale AM computing, such as in a mammalian
brain with 1010 neurons (biological computing elements)
and 1014 synapses (biological interconnects), at sustainable
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Fig. 1. (a) Heteroassociative storage of patterns in an 11 × 11 CNN array,
and successful recall with noisy input C. (b) CNN array with identical locally
interconnected cells, NR = 1.

TABLE I

APPLICATIONS OF AM

operating power. Hence, a critical requirement for an AM
computing platform is to minimize its power while meeting
the throughput and performance demands. While operating
at lower power, AM should be able to correctly identify the
correlation (referred to as a successful recall), even under noise
in the input pattern and maximize the total number of stored
associations (defined as memory-capacity).

Cellular neural network (CNN) has been investigated for
AM applications [6], [7]. A CNN is composed of a set of
identical computing elements (cells) organized as a 2-D-array
where each cell is interfaced to its local neighbors using
programmable synaptic-weight multipliers [8] [Fig. 1(b)]. This
local connectivity makes CNN an attractive hardware plat-
form, particularly in advanced nanometer nodes where inter-
connect scaling is challenging [9]. The algorithmic analysis
of CNN-AM has shown that increasing the cell-to-cell
connectivity, i.e., having more connections per cell, improves
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successful recall and memory-capacity [10]. A higher cell-to-
cell connectivity implies a nonlinear increase in the number
of synaptic-weight multipliers per cell. Therefore, the ability
to design ultralow-power synaptic-weight multiplier becomes
critical for low power AM.

A variety of CMOS-based CNN implementations have
emerged [11]–[14]. However, power reduction of CMOS-CNN
is constrained due to the limited switching slope and higher
leakage current of MOSFET. The tunneling devices have been
explored as potential alternatives to MOSFET for implement-
ing low-power CNN cells. For example, reduced complexity
CNN cells with resonant tunneling diodes have been
studied [15], [16]. More recently, CNN cells with TFETs
have been reported [17], [18]. While these prior works have
primarily studied CNN cells; in a CNN-AM, due to the high
connectivity requirement reducing the power dissipation in
synaptic-weight multipliers becomes equally, if not more,
crucial.

In our prior work, we presented the benefits of TFET
for ultralow power analog design [19]. Very low OFF-current
of TFET enables ultralow power operation of analog
design, and steeper switching slope of TFET enables greater
transconductance (GM) even at a low power. Specifically,
a TFET based ultralow power operational transconductance
amplifier (OTA) was demonstrated. This paper utilizes a
TFET-OTA as a synaptic-weight multiplier for CNN, and
explores a TFET-based low power, robust, and high perfor-
mance CNN-AM platform. We focus on silicon (Si) channel
TFET with SixGe1−x (x = 0.5 − 0.7) tunnel junction near
the source region, due to their excellent ON-OFF ratio over
small gate voltage swing. It should be noted that Si-based
TFETs are less suitable for digital applications due to their low
ON-current as compared with heterojunction TFETs with alter-
nate (e.g., InAs [20]) channel materials. However, in this paper,
we show that silicon-based TFET, even with its low digital
performance, can realize a high performance and robust AM
computing platform.

The rest of this paper is organized as follows. Section II
presents CNN-AM. Section III discusses properties of
SixGe1−x TFET. Section IV presents the simulation results for
TFET-based CNN-AM. Section V discusses various techno-
logical aspects of a TFET-CNN-AM. Finally, the conclusions
are drawn in Section VI.

II. CNN-BASED AM

Fig. 1(b) shows a CNN platform. The CNN consists of an
array of cells. An analog implementation of a CNN cell is
shown in Fig. 2 [11]. Each cell (Ci j ) consists of three nodes:
the input (ui j ), state (xi j ), and output (yi j ), and OTA is used
to enable intercell interaction. Underlying dynamics of the
CNN cell Ci j is given by [8]

C
dV (x i j )

dt
= − V (x i j)

R
+

∑

klϵS i j

Akl,i j V (ykl)

+
∑

klϵS i j

Bkl,i j V (ukl)+ I i j (1a)

V (y i j ) = fact(V (x i j )) (1b)

Fig. 2. CNN cell schematic and inset showing the output characteristics of
activation function generator, and the cell design parameters.

where Si j is the set of neighboring cells directly connected to
the cell Cij . Various other notations of the equation above were
shown in Fig. 2. In CNN dynamics, at equilibrium the output
saturates to the limits of the activation function generator,
VTP or VTN [8]. The parameters Akl,i j and Bkl,i j represent the
feedback and feed-forward templates, and Ii j represents the
bias term. The templates define the synaptic-weights and these
weights are realized by GM values of a set of OTAs as shown
in Fig. 2. On the other hand, the CNN cell is implemented
using an integrator including RC elements, a bias generator,
and a saturating function generator.

The AM operation is shown in Fig. 1(a), where association
of letters T, C has been established to E, H, respectively.
Various pixels correspond to the CNN cells, and black and
white color corresponds to VTN and VTP voltages. When the
input of CNN cells are excited with a distorted pattern of C, the
output of cells accurately evolve to the respective pattern H at
equilibrium. The design of CNN-AM involves the algorithmic
synthesis of synaptic weights, Akl,i j , Bkl,i j , and bias Ii j . For
this synthesis, the Hebbian learning method from [7] is utilized
in this paper. In general, the AM synaptic weights are space
variant, i.e., the feed-forward/feed-back templates of CNN cell
can vary from cell-to-cell. Distribution and storage of space
varying synaptic weights is a critical challenge in CNN-AM.

A CNN architecture with a neighborhood-radius (NR) of
one (NR = 1) is shown in Fig. 1(b). A higher NR design
interconnects more cells together. For example, for NR = 2,
all CNN cells in the dotted box will be directly connected to
the cell C33. Due to the challenges in distribution and storage
of space variant synaptic-weights, several works consider low
resolution or quantized implementation of the weights [21].
In Fig. 3(a), we compare the recall probability among various
NR CNN-AM and at varying degree of quantization. A least
square quantization is performed. It is observed that while
a higher NR design is tolerant to quantization; in a low
NR design, the recall probability degrades with decreasing
quantization bits. Thus, a higher NR design can mitigate
complications of accurate distribution/storage of space variant
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Fig. 3. (a) Recall probability at varying degree of quantization and for
varying NR CNN-AM. (b) Memory capacity and input noise tolerance
(in HD bits), at varying NR. Results are for 11 × 11 CNN-AM.

synaptic-weights due to the amenability toward quantization.
Fig. 3(b) shows the memory-capacity and input pattern noise
tolerance [in Hamming distance (HD) bits] of CNN-AM for
varying NR designs. A five bit quantization on synaptic-
weights is considered. The input pattern noise tolerance is
defined as the maximum number of corrupted bits in the
input pattern while a successful recall is still performed. The
memory-capacity is defined here as the maximum number
of stored associations when the AM can successfully recall
the stored associated pattern even under noise in the input
pattern. As observed with increasing NR, both the memory-
capacity and pattern noise tolerance of AM are significantly
enhanced. Therefore, a higher NR CNN-AM, apart from
its amenability to imprecise implementation, also exhibits a
greater algorithmic quality.

However, a higher NR CNN-AM, due to its greater connec-
tivity, also requires an increasingly higher number of synaptic-
weight multipliers (i.e., OTAs) while the number of cells
remains constant. Hence, a critical requirement to realize a
robust but low-power AM with high algorithmic quality is the
ability to scale down the OTA-power, so that a higher NR CNN
can still operate under lower power constraint. In addition,
while reducing the CNN power, the throughout efficiency
(number of operations per s per power) of the AM platform
also needs to be maintained or improved.

In the subsequent discussion, we study TFET for its utility
in low-power high NR CNN-AM design. We observe that
several unique electrical characteristics of TFET make it
suitable for such a computing platform.

III. SixGe1−x TFET

A vertical nanowire TFET with SixGe1−x tunnel junction at
source, similar to the one fabricated in [22], [Fig. 4(a)] is
studied in this paper. Current conduction in TFET occurs
through band-to-band-tunneling (BTBT), and the gate voltage
controls the BTBT barrier width. We compare the electrical
characteristics of TFET with FinFET [Fig. 4(b)]. The stud-
ied TFET and FinFET transistors are of similar gate length
(45 nm), equivalent fin/wire perimeter, and oxide thickness
[Table II]. The FinFET geometric specifications correspond
to the 22 nm channel length technology, however, a larger
channel length is considered here for analog applications.

Fig. 4. (a) TFET schematic with SixGe1−x tunnel junction at the source.
(b) FinFET schematic.

TABLE II

TFET/FinFET SPECIFICATIONS: GEOMETRY AND SIMULATION MODELS

Fig. 5. Comparison of the electrical characteristics of n-TFET and n-FinFET.
(a) IDS–VGS. (b) gm/IDS–IDS (VDS = 1 V).

The characteristics of TFET and FinFET were extracted
using Sentaurus device with the simulation models listed in
Table II [23]–[25].

Fig. 5(a) shows that the ON-current of TFET is several
orders of magnitude lower compared with FinFET, however,
TFET also achieves much lower OFF-current and steeper
switching slope. The minimum achievable OFF-current in
FinFET is limited through subthreshold leakage and the other
mechanisms such as gate-induced-drain-leakage [26]. The
TFET achieves much lower OFF-current due to its built-in
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Fig. 6. Cohesive simulation methodology, integrating TCAD, SPICE,
and functional simulations to extract CNN-AM characteristics at different
technologies, TFET and FinFET.

Fig. 7. Transient evolution of various cell state voltages, and the network
settling time.

barrier (p-i-n). A much lower OFF-current of TFET enables
a necessary power scaling of TFET-OTA for a high NR CNN.

Steeper switching-slope (SS) of TFET improves gm per bias
current (gm/IDS) for TFET [gm/IDS = log (10)/SS]. As shown
in Fig. 5(b), gm/IDS of TFET can exceed the thermal limit of
MOSFET, q/kT. A sub-60 mV/decade steeper switching slope
was also experimentally demonstrated in the similar nanowire
TFET structures [27]. However, at a higher bias current as the
switching slope of TFET degrades, gm/IDS of TFET drops as
well. Hence, benefits of greater gm/IDS in TFET are limited
to a smaller bias current. At very low IDS, gm/IDS drops since
IDS is dominated by the trap assisted tunneling. Higher gm/IDS
of TFET will facilitate a lower power in OTA, where an
equivalent GM of the MOSFET-based design can be achieved
at a lower bias power.

IV. TFET-BASED CNN-AM

A. Simulation Methodology

We have developed an integrated methodology connecting
device simulations using TCAD, circuit simulations using
SPICE, and functional simulations using MATLAB Fig. 6.
In CNN-AM, for a given cell resistance R, the Hebbian learn-
ing algorithm [7] determines the synaptic-weights (OTA-GMs)
Aij,kl , Bij,kl , and bias, Ii j , to store correlation between the
desired patterns. For these parameters, we use MATLAB
to solve (1) and estimate the CNN-AM performance (recall
speed, input pattern noise tolerance, and memory-capacity).
Recall speed is defined by the duration when various state
voltages of the CNN array saturate to 95% of their equilibrium
values as shown in Fig. 7.

For a given synaptic GM specification, we use power-
performance trace from OTA circuit simulation to estimate
the OTA biasing power, POTA (GM). To simulate TFET- and
FinFET-based OTA, electrical characteristics of TFET/FinFET

are first extracted using Sentaurus-based TCAD simulations
[as shown in Section III]. A Verilog-A-based table model
interpolates these electrical characteristics across finely vary-
ing gate and drain bias voltages [19].

Using these Verilog-A table models, SPICE-based cir-
cuit simulation is performed to predict the power versus
performance characteristics of TFET/FinFET-OTAs. The cell
biasing current, Ii j , obtained through the Hebbian algorithmic
synthesis [7], determines the power due to cell biasing. The
voltage trace across cell capacitance, C, obtained through the
functional simulations of (1), determines the dynamic power
dissipation, Pdyn(Vxi j ), across C. Cell capacitance, C, is much
larger than the other parasitic capacitances, hence, we ignore
the effect of other parasitics. Due to predominance of OTAs in
CNN, and for simplicity, we ignore the bias power contribution
from the other cell components, integrator, and activation
function generator. The net CNN power is given by

PCNN =
∑

i j

(
Pdyn(Vx,i j ) + VDD × I i j

+
∑

kl∈S i j

POTA(Akl) +
∑

kl∈S i j

POTA(Bkl)

)
. (2)

In (1), while scaling R and inversely scaling down the GMs,
Aij,kl , Bij,kl , and bias, Ii j , does not affect the equilibrium
states [i.e., xi j (t) ∀ dxi j (t)/dt = 0]. Thereby, with invariant
equilibrium states, the algorithmic quality of AM operation
is retained. Hence, while retaining the algorithmic quality,
increasing the cell resistance, R, enables reducing the cell bias
current, Ii j , and OTA-GMs, and in turn, the OTA bias power,
POTA(GM). However, with increasing R, the cell time constant,
R × C , increases, and therefore, recall time also increases.
The above power scaling approach is applied to explore
CNN-AM across power-performance while retaining its
algorithmic quality.

B. TFET-Based OTA

Schematic of an OTA is shown in Fig. 8(a), where OTA
consists of the transconductance generator (TG) and current
summer, and generates an output current, IOUT, proportional
to its input voltage, VIN. The OTA-GM is controlled by
its bias current, IBIAS. A cross coupled configuration at the
TG stage, as shown in the figure, expands linearity of OTA
to the threshold limits, VTN to VTP, of the activation function.
The ratio of the OTA-GM to its bias power, POTA, can be
expressed as

GM
POTA

= 1
2

× 1
VDD

×
2∑

i=1

(
gm(Mia )

IDS(Mia)

K
K + 1

+ gm(Mib)

IDS(Mib)

1
K + 1

)
× M R

M R + 1
.

(3)

Here, gm(Mi ) and IDS(Mi ) are the realized GM and bias
current in transistor, Mi , respectively; K is the transistor width
ratio for M1a to M1b (M2a to M2b), and MR is the mirror ratio
of current summation stage, i.e., the ratio of width for M4b to
M4a (M4d–M4c).
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Fig. 8. (a) OTA schematic. (b) Power efficiency (GM/POTA) and power
scaling comparison between TFET- and FinFET-OTA.

TABLE III

OTA DESIGN PARAMETERS

In Fig. 8(b), considering the parameters in Table III,
we compare GM of TFET-OTA and FinFET-OTA across
bias power by varying IBIAS. From (3), higher gm/IDS of
OTA input transistors improves the GM/POTA of OTA. At a
lower bias current, since gm/IDS of TFET is higher than
MOSFET [Fig. 5(b)], TFET-OTA has higher GM/POTA than
FinFET-OTA under low power operation. Below 100 pW bias
power, TFET-OTA has higher GM/POTA than even an ideal
MOSFET-based OTA. The ideal MOSFET-OTA characteristics
are extracted considering switching slope = 60 mV/decade.
With its higher GM/POTA, the TFET-OTA can operate at
a lower power than MOSFET-OTA while still achieving an
equivalent GM. Furthermore, due to an ultralow OFF-current of
TFET, TFET-OTA can operate down to <5 pW power, while
FinFET-OTA is scalable only till ∼200 pW. Power scaling
of FinFET-OTA is limited due to the higher OFF-current
in FinFET, and below 200 pW, the leakage current over-
whelms the GM current. However, at a higher bias condition
as gm/IDS of TFET degrades, FinFET-OTA achieves higher
GM/POTA than TFET-OTA for such high power/performance
operation. Therefore, TFET-OTA achieves higher GM/POTA

Fig. 9. Circuit scheme to locally store and implement quantized synaptic
weights.

Fig. 10. (a) Distribution of synapse weights. (b) Recall speed and TE between
TFET- and FinFET-CNN-AM across CNN power.

than FinFET-OTA only under low-power operation. Studying a
TFET-OTA design for neural amplifier, we earlier reported
similar benefits of TFET-OTA [19].

C. TFET-Based CNN-AM

We compare the power-performance characteristics of
TFET and FinFET-based CNN-AM with NR of one. The test
case of Fig. 1(a) is considered. A five bit least square signed
quantization of the synaptic-weights is considered due to the
complications of accurate analog weight storage. With the
quantized synaptic-weights, the circuit schematic of Fig. 9
will enable digital storage/distribution of space varying analog
synaptic-weights. Here, the tail transistors of OTA, M3a, and
M3b, are implemented with quantized widths. And, a number
of instances of M3a and M3b are selected to implement
the tail biasing of OTA depending on the localized storage
of synaptic-weights. Simulation methodology as described
in Section IV-A is utilized. Best-fit power-performance
characteristics of TFET and FinFET-OTA as shown in Fig. 8(b)
are utilized. In Fig. 10(a), a distribution of quantized synaptic-
weights is shown. The power-scaling approach scales each of
these coefficients inversely proportional to R, and therefore,
the bias power to realize corresponding GMs also reduces.
However, as noted in Fig. 8(b), the minimum power and
minimum realizable GM in TFET- and FinFET-OTA is
limited; this, in turn, limits the power-scaling through the
earlier approach and the minimum operational power for
CNN. In Fig. 10(b), the TFET-CNN-AM operates down
to ∼nW power due to the ultralow power scalability of
TFET-OTA, and ∼ms recall time at this power will still be
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Fig. 11. Synapse power distribution and comparison between TFET- and
FinFET-CNN-AM at net iso-power cases for (a) low and (b) high performance
application.

Fig. 12. OTA-GM and net CNN cell GM across NR for iso-powered
CNN designs.

useful for recognition and classification applications in low
power systems (Table I).

The net OTA bias power distribution at varying synaptic-
weights for TFET- and FinFET-CNN-AM is shown
in Fig. 11(a) for low performance operation (recall speed =
1 ms). A higher GM/POTA of TFET-OTA at low power
attributes to lower bias power across synaptic-weights in
TFET-CNN-AM than FinFET-CNN-AM. However, at a
higher power since GM/POTA of TFET-OTA is lower, the
TFET-CNN-AM has higher power than FinFET-CNN-AM for
such high performance operation [Fig. 11(b), recall speed =
10 µs]. Therefore, a TFET-CNN-AM can only achieve higher
throughput efficiency (TE) than FinFET-CNN-AM as long as
the performance constraints are low.

In Fig. 10(b), the TE of TFET-CNN-AM and
FinFET-CNN-AM is compared across recall speed and
CNN power. Since, GM/POTA of TFET-OTA improves at
lower bias current [Fig. 8(b)], the TE of TFET-CNN-AM also
improves at lower power. Below 200 nW, TFET-CNN-AM has
better TE than even an ideal MOSFET (i.e., with switching
slope = 60 mV/decade)-based CNN-AM. However, note that
under subthreshold operation, due to a constant switching
slope of FinFET, GM/POTA of FinFET-OTA is invariant
across power [Fig. 8(b)], hence, the TE of FinFET-CNN-AM
is also invariant across power under subthreshold operation
of FinFET-OTA.

D. Improving TFET-CNN-AM by High NR Design

The TE of a TFET-CNN-AM can be improved by a higher
NR design. In a higher NR design, there are more OTAs
per cell. Thus, at a given total power for CNN, in higher
NR design, the power allocated for each of the OTA is lesser,
and the realized OTA-GM is lower [Fig. 12]. However, as

Fig. 13. TE of TFET- and FinFET-CNN-AM at varying NR.

Fig. 14. For maximum NR operation between TFET and FinFET CNN-AM
at varying power. (a) Input pattern noise tolerance. (b) Memory capacity.

shown in Fig. 8(b), GM/POTA of TFET-OTA increases at a
lower power. Therefore, at the same total power, in a higher
NR design, TFET-OTAs operate at a more energy-efficient
point. Due to this unique characteristic of TFET, and with
higher OTA count in a higher NR CNN, a higher net GM
(
∑

OTA-GMn) can be realized for a higher NR TFET-CNN
cell at the similar power [Fig. 12]. In Fig. 13, TE charac-
teristics of TFET-CNN-AM are demonstrated for higher NR
designs. Although, a higher NR TFET-CNN-AM design is
less scalable in power, it achieves better TE at the similar
power. Also, note that these TE benefits of high NR design
are unique to TFET-CNN-AM. Due to a constant GM/POTA
of FinFET-OTA, the TE in FinFET-CNN-AM is limited, and
a higher NR (NR = 2) does not improve the TE.

Therefore, an optimal approach to exploit the higher
GM/POTA of TFET-OTA is by operating the TFET-CNN-AM
at the maximum NR given the CNN power scaling limitations
as shown in Fig. 13. Furthermore, a higher NR operation can
also achieve the higher algorithmic quality [Fig. 3]. In Fig. 14,
utilizing a maximum NR TFET- and FinFET-CNN-AM, the
algorithmic quality is shown at varying power. For Fig. 14(a),
the test case of Fig. 1(a) is considered. In Fig. 14(b), for the
memory-capacity test, apart from the patterns of Fig. 1(a),
varying count of additional random binary patterns are con-
sidered for synthesis and recall. The TFET, by enabling a
higher NR CNN-AM even at a lower power, enables a higher
algorithmic quality. At 200 nW, while TFET-based NR = 5
CNN-AM enables HD noise tolerance of 15 bits and memory-
capacity of 21 patterns, the FinFET-based NR = 1 CNN-AM
only achieves 5 bits and two patterns, respectively.
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Fig. 15. Probability to recall across NR architectures with increasing
variability in (a) GM and (b) VO (normalized by saturation limit of fsat ).

E. Impact of Process Variations

We study the impact of transistor variability on AM qual-
ity considering the effect of higher connectivity through
functional simulations of CNN-AM. Transistor variabil-
ity induces non-idealities in OTA, as offset voltage (VO)
and GM error (GME rather than the designed GMO).
Considering a normal distribution on VO and a log-normal
distribution on GME /GMO , we introduce the corresponding
distribution to synaptic-weights, Ai j,kl and Bi j,kl , in the func-
tional simulations of (1), and study the impact of transistor
variability. A log-Normal distribution for GME /GMO is used
due to the exponential sensitivity of current to gate voltage
in both subthreshold FinFET and TFET. Higher transistor
variability induces a greater variability in VO and GM.
In Fig. 15, a higher NR CNN shows significant resiliency
against increasing σ (GMO /GME ) and σ (VO). A higher NR
CNN is more robust in AM operation to begin with (Fig. 3),
and the design softly fails with the higher unreliability of
OTAs. Hence, a higher NR CNN design, apart from greater
TE and algorithmic quality, will also be resilient to process
defects.

V. DISCUSSION

A. Implementation Complexity in a Higher NR TFET-CNN

The TFET enables implementation of a higher NR CNN
even at a low power, and thus, provides opportunities for
a low power AM design with higher algorithmic quality,
process variation resiliency, and higher TE. However, a higher
NR implementation of CNN will also increase the complexity
and area of implementation. In Fig. 16, we demonstrate
algorithmic and TE of TFET-CNN-AM with increasing num-
ber of synaptic interconnections at varying NR. Note that
HD noise tolerance and TE increment with higher number
of synaptic interconnections begins to saturate, meanwhile,
the network complexity increases proportionally to the count
of interconnections. Hence, due to the area and complexity
constraints in an AM design, the optimal NR will be limited.

Various technological innovations such as a vertical and
low footprint implementation of TFET [22] can reduce the
network complexity and area requirement, and enhance the
optimal NR of design. Simultaneously, novel circuit techniques
can be explored to mitigate the impact of higher interconnect
capacitance at higher NR. For example note that, in Fig. 2,

Fig. 16. Saturating HD noise tolerance and throughput efficiency at increasing
number of synaptic interconnections.

a higher interconnect capacitance does not significantly affect
the functionality of CNN, since the output node of OTAs is
regulated through integrator, and thus, the effect of parasitic
capacitances is suppressed.

B. TFET CNN for Image Processing Versus AM

Notably, CNN-AM exploits the TFET characteristics differ-
ently, and perhaps more effectively, than in simple CNN-based
image processing applications [17], [18], [28], [29].
In our prior work [28], for TFET-CNN-based image processing
applications, TFETs are exploited to increase the number of
nodes in the network for a given power (by reducing the
OTA power) and keeping the connectivity (NR = 1) constant.
More nodes lead to higher parallelism, and hence, higher TE
by exploiting parallelism in CNN-based image processing.
A lower OFF-current of transistors becomes more critical in
expanding the network size and exploiting the parallelism
benefits.

On the other hand, a TFET-CNN-AM is significantly bene-
fited both from the low OFF-current as well as higher gm/IDS
of TFET as presented in this paper. It is shown that lower
OFF-current, and hence, the low-power of TFET-OTAs
are better exploited by increasing the NR in CNN-AM
(under power constraints). From an algorithmic perspective,
higher NR improves algorithmic quality (noise tolerance and
memory-capacity). Interestingly, from an algorithmic perspec-
tive, TE is expected to be independent of NR; as observed in
case of the FinFET-CNN-AM (Fig. 13). However, as explained
in Fig. 12, the higher gm/Ids of TFET changes the cell dynam-
ics at higher NR leading to higher TE in TFET-CNN-AM.

Furthermore, unlike space invariant templates in
CNN-based image processing, synapse weights in AM
depend on the pattern itself, are space variant, and can vary
widely in magnitude (e.g., ∼15× variation between the
largest and smallest synapse weight in Fig. 11). Therefore,
the interactions between the CNN-AM power and the
variable switching slope in TFET becomes significantly more
important to consider as explained in Fig. 11.

VI. CONCLUSION

This paper presents the potential of SixGe1−x-TFET in
designing efficient and robust CNN-AM. A lower OFF-current
of SixGe1−x-TFET enables lower power operation of CNN
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synaptic-weight multiplier enabling a higher NR CNN for a
given power. A higher NR CNN-AM improves algorithmic
quality of AM. In addition, higher NR also improves TE of
TFET-CNN-AM at a constant power, thanks to the steeper
switching slope (higher gm per unit bias power) of TFET.
Increasing performance benefits along with the increasing
tolerance against process variability at higher NR indicates
building higher NR CNN-AM as the suitable approach to
build large scale higher performance and robust AM imple-
mentation. However, increasing implementation area along
with interconnect complexity can ultimately limit the NR of
implementation. The application of TFET in CNN-AM also
reveals more involved device-algorithm interactions, than what
observed in TFET-CNN-based image processing [28]. Increas-
ing NR, as performed here for CNN-AM, more effectively
exploits unique TFET and AM characteristics for quality, noise
tolerance, speed, power, and TE. Future work needs to con-
sider the design challenges of higher NR CNN-AM including
area and interconnect. The vertical orientation of SixGe1−x
nanowire TFET alleviates the area constraints, feature size
scaling of the nanowire will be important. The local connec-
tivity in CNN help to partially mitigate the challenge of global
interconnects. The analog communication also reduces the
density; however, the requirements of higher local interconnect
density for higher NR design will still be a challenge.
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