28.7: Pairwise Coupled Hybrid Vanadium Dioxide-MOSFET (HVFET) Oscillators for Non-Boolean Associative Computing

N. Shukla¹, A. Parihar², M. Cotter¹, H. Liu¹, M. Barth¹, X. Li¹, N. Chandramoorthy¹, H. Paik³, D. G. Schlom³, V. Narayanan¹, A. Raychowdhury², and S. Datta¹

¹The Pennsylvania State University, University Park, PA, USA ²Georgia Tech, Atlanta, Georgia, USA ³Cornell University, Ithaca, NY, USA

Wednesday: 11:35 AM Session: CDI

Associative Computing

degree of match or association between [X] and [Y]

Applications: Data recognition, mining and classification Pattern / Image recognition Visual Saliency

Distance norm for Associative processing

An associative computing platform must compute distance

Euclidean Distance Calculation using CMOS Accelerator

32nm CMOS accelerator

5% 48% 46% ★ + • • + 13.1mW & ~500,000 gates

Adder tree, subtractors and multipliers: A power bottleneck

 Boolean bottleneck in Adder tree and Square root (500,000 gates!)
 Evaluate an alternate non-Boolean architecture to overcome 4 bottleneck

>Use synchronization dynamics (phase, frequency) of coupled oscillators as computational state variable

5

Coupled Oscillatory Systems

Synchronization of Metronomes

CMOS

https://www.youtube.com/watch?v=JWToUATLGzs; (lkelguchi Lab)

Opto-mechanical Oscillators

Zhang, Mian, et al. "Synchronization of micromechanical oscillators using light." *Physical review letters* 109.23 (2012): 233906.

Shibata, Tadashi, et al. "CMOS supporting circuitries for nano-oscillator-based associative memories." CNNA, 2012 13th International Workshop on. IEEE, 2012.

Spin Torque Oscillators

Kaka, Shehzaad, Matthew R. Pufall, William H. Rippard, Thomas J. Silva, Stephen E. Russek, and Jordan A. Katine. "Mutual phase-locking of microwave spin torque nano-oscillators." *Nature* 437, no. 7057 (2005): 389-392.

Vanadium dioxide (VO₂) based relaxation oscillators

- Phase transition in VO₂
 Oscillator demonstration via resistive feedback
 - Hybrid VO₂-MOSFET (HVFET) oscillator
- Pairwise Coupled HVFET Oscillators
- Computing with HVFET Oscillators
 Phase as computation state variable
- Power Consumption and benchmarking

≻Summary

Vanadium dioxide (VO₂) based relaxation oscillators

- Phase transition in VO₂
- Oscillator demonstration via resistive feedback
- Hybrid VO₂-MOSFET (HVFET) oscillator
- Pairwise Coupled HVFET Oscillators
- Computing with HVFET Oscillators
 - Phase as computation state variable
- Power Consumption and benchmarking

≻Summary

Insulator-metal phase transition in VO₂ Metallic VO₂

9

>Abrupt change in VO₂ resistivity through electron correlation dynamics in ultra-thin VO₂ films.

M. Huefner, R. Ghosh, E. Freeman, N. Shulka, H. Paik, D. G. Schlom, and S. Datta "Hubbard Gap Modulation in Vanadium Dioxide Nanoscale Tunnel Junctions", *Nano Letters*, October 2014.

Electrically induced phase transition

>Abrupt, hysteretic phase transition can be electrically triggered

>Vanadium dioxide (VO₂) based relaxation oscillators

Phase transition in VO₂

 Oscillator demonstration via resistive feedback

- Hybrid VO₂-MOSFET (HVFET) oscillator
- Pairwise Coupled HVFET Oscillators
- Computing with HVFET Oscillators
 - Phase as computation state variable
- Power Consumption and benchmarking

≻Summary

Pairwise Coupled HVFET Oscillators

Capacitively coupled oscillators show frequency synchronization

Synchronization of Pairwise Coupled HVFET Oscillators

Resonant frequency can be tuned with ΔV_{GS}
 Oscillators show near anti-phase synchronization

>Vanadium dioxide (VO₂) based relaxation oscillators

- Phase transition in VO₂
- Oscillator demonstration via resistive feedback
- Hybrid VO₂-MOSFET (HVFET) oscillator
- Pairwise Coupled HVFET Oscillators
- Computing with HVFET Oscillators
 Phase as computation state variable
- Power Consumption and benchmarking

Equivalent circuit to analyze HVFET oscillator synchronization dynamics

Phase Space Diagram (Locked Case)

>Part of steady state periodic orbit in the XOR=0 region of the phase space depends on $\Delta V_{GS} = V_{GS,2} - V_{GS,1}$

System implementation to measure steady state periodic orbit of the HVFET oscillators

Distance calculation using Coupled HVFET oscillators experiment simulation 0.7 0.55 $\Delta V_{GS} = V_{GS,2} - V_{GS,1}$ $\Delta V_{GS} = V_{GS,2} - V_{GS,1}$ 0.6 0.50 0.5 0.45 Ľ Ŷ 0 0.4 O0.40

0.3

0.2

0.1

-0.4

-0.2

0.0

0.4

0.2

21

 ΔV_{GS} (V) > Degree of match between inputs can be measured with HVFET oscillators

0.0

 ΔV_{GS} (V)

0.2

0.35

0.30

0.25

-0.2

Distance Norm (L) for pairwise coupled oscillators

 Synchronized HVFET oscillators follow a L_{1/2} distance norm
 Distance computing hardware realized using synchronized HVFET oscillators

Visual attention using Coupled Oscillators and CMOS Visual Attention

Objects with high degree of contrast most salient to human eye
²³

Visual Saliency using Coupled Oscillators and CMOS

Coupled Oscillators

CMOS

➢VO₂ coupled oscillators an alternate hardware to do visual saliency

>Vanadium dioxide (VO₂) based relaxation oscillators

Phase transition in VO₂

 Oscillator demonstration via resistive feedback

- Hybrid VO₂-MOSFET (HVFET) oscillator
- Pairwise Coupled HVFET Oscillators
- Computing with HVFET Oscillators
 - Phase as computation state variable

Power Consumption and benchmarking

power reduction (fundamental distance computing hardware)

Power Analysis: HVFET based computational hardware

Peripheral circuitry a large power consumer

Benchmarking

>~50X power reduction enabled through a physics based computing approach! 28

>Vanadium dioxide (VO₂) based relaxation oscillators

Phase transition in VO₂

 Oscillator demonstration via resistive feedback

- Hybrid VO₂-MOSFET (HVFET) oscillator
- Pairwise Coupled HVFET Oscillators
- Computing with HVFET Oscillators
 - Phase as computation state variable
- Power Consumption and benchmarking

Summary

Experimental demonstration of coupled VO₂ based relaxation oscillators with input programmable synchronization

Demonstration of coupled oscillators as a fractional distance (L_{1/2}) computing machine

>Application in Associative processing e.g. visual

physics based computing approach!

Thank you!