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Antimonide based (Sb) compound semiconductors are promising for complementary logic applications due to
their advantageous electron and hole transport properties. Ultra-thin device layers of compressively strained InSb are of
particular interest for p-channel MOSFETs due to their reduced hole transport mass and higher mobility compared to
strained InGaSb quantum well (QW) two dimensional hole gas (2DHG) and Si inversion layers (Fig. 1). Schottky gated
p-channel 1.9% strained InSb QW-FETs have been previously demonstrated [1]. High gate leakage through the Schottky
gate results in high power dissipation and limits the ON-state performance. The natural evolution is to integrate a high-k
insulator between the gate electrode and InSb channel to reduce the gate leakage, while preserving the superior hole
transport properties. Sb-based materials are particularly reactive in atmosphere resulting in poor high-k
dielectric/antimonide interface. In this work, we demonstrate a high mobility p-channel strained InSb pMOSFET with 5
nm Al,O; high-k dielectric integrated using a composite InP/ Al 35Ing 45Sb barrier.

Fig. 2 (a) shows the schematic of the strained InSb MOSFET with composite InP/ Al 35Ing ¢sSb barrier. The p++
Gay 5 Ing sSb layer was incorporated to reduce the source/drain series resistance. Shown in Fig. 2 (b), (c) are the TEM
cross-sectional micrograph of the gated region and energy band diagram of the 5 nm thick compressively strained InSb
QW simulated using 6-band k.p Schrodinger-Poisson self-consistent solver. Compressive strain in the quantum well
results in splitting of HH-LH bands, reduction of in-plane transport effective mass. As shown in Figs. 3-4 an effective
mass of m'=0.08m, was extracted using Shubnikov-de Haas measurements. Figs. 5-6 show the experimental and modeled
Hall measurement results on strained InSb/Alg35Ing¢sSb quantum well heterostructure. Scattering analysis using
Relaxation Time Approximation (RTA) [4] formalism is performed to analyze the temperature dependent experimental
hole transport. The analysis indicates the dominance of polar optical phonon scattering at room temperature and interface
roughness scattering limiting mobility at T=20K. Hole density modeling as function of temperature shown in Fig.5
indicates major contribution from 1% subband in strained InSb QW from 20K-300K, along with less than 10%
contribution from the Alj;sInggsSb buffer at room temperature. High hole mobility of 680 cm*/Vs in the QW was
obtained at a hole sheet density of 5x10'2 /em? at 300K. At 150K and 77K, hole mobilities of 2,500 cm?/Vs and 4,500
cm?’/V's were obtained at carrier densities of 2.3x10'? /em? and 2.0x10"? /em?® ,respectively, indicating superior transport.

The InSb p-channel MOSFET was fabricated using Pd/Pt/Au alloyed source/drain contacts, followed by a
selective recess etch of the Gag s Iny sSb layer. Plasma Enhanced Atomic Layer Deposition (PEALD) at 200 C was used to
deposit 5 nm of Al,O; on the exposed InP barrier yielding an equivalent oxide thickness, EOT, of 5.4 nm. The fabrication
process flow is detailed in Fig.8. Circular TLM measurements after PEALD Al,O; deposition and Forming Gas Anneal
(FGA) yielded a contact resistance of 1300 Q-um (Fig. 9). Fig. 10 shows the measured and corrected for D, [5] split CV
characteristics at various temperatures for InSb QW-MOSFET with 5 nm Al,O3 and composite InP/Al 35Ing ¢sSb barrier.
The poor CV modulation at 300K is indicative of high density of traps within the bandgap of InP/Alj;s5Ing¢sSb. As the
temperature is decreased, the trap response in the depletion region is significantly slowed, essentially causing freeze out.
The reduced contribution of traps results in improved CV modulation at T=150 and 77K.

Fig. 8 shows the transistor drain current I -V characteristics for an Lg =5 pm InSb QW-MOSFET with PEALD

Al,O3. The transistor exhibits an oy (Vg= V1 +0.5V) of 2.0 pA/um, a peak Gy, of 6.8 uS/um and a SS of 58 mV/dec at
T=77K. Fig. 9 shows the transistor drain current I -V characteristics for an Lg =5 pm InSb QW-MOSFET as a function

of temperature. At T=300K the parallel conduction from the buffer limits the Ion/Iopr ratio. As temperature is decreased,
the contribution of parallel conduction is reduced, the Ion/Iopr ratio improves from 100 at T=150K to over 10* at T=77K.
Fig. 10 shows the experimentally extracted maximum effective hole mobility as a function of carrier density after
correcting for series resistance [6]. The peak effective hole mobility was 2,000 cm?/(Vs) and 1,000 cm?*/(Vs) for T=77K
and T=150K.

Conclusion: We demonstrate synthesis of p-channel InSb MOSFET with 1.9% compressive biaxial strain with
outstanding room temperature and 150K Hall mobility of 680 cm’/Vs and 2,500 cm*/V's at hole sheet density of 5x10'
fem® and 2.3x10"* /em’, respectively. The incorporation of an InP layer on top of AlyssIngesSb barrier allows for
integration of a high-k dielectric and demonstration of InSb pMOSFET with significantly reduced gate leakage. Parallel
conduction limits the on-off ratio of the InSb MOSFET above 150K. Refinement of the InP barrier to reduce interface
states and buffer layer to reduce parallel conduction is expected to improve InSb pMOSFET characteristics at 300K.
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Fig.1: Hall hole mobility versus hole
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Fig.2: (a) Schematic of InSb QW-MOSFET on S.I. GaAs substrate
with 5nm PEALD Al,03 (b) Cross-sectional TEM micrograph on
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Fig.3: Shubnikov-de Haas oscillations in
sheet resistance as a function of 1/B at T=4
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