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ABSTRACT

Device level heterogeneity promises high energy efficiency
over a larger range of voltages than a single device technol-
ogy alone can provide. In this paper, starting from device
models, we first present ground-up modeling of CMOS and
TFET cores, and verify this model against existing proces-
sors. Using our core models, we construct a 32-core TFET-
CMOS heterogeneous multicore. We then show that it is a
very challenging task to identify the ideal runtime configura-
tion to use in such a heterogeneous multicore, which includes
finding the best number/type of cores to activate and the
corresponding voltages/frequencies to select for these cores.
In order to effectively utilize this heterogeneous processor,
we propose a novel automated runtime scheme. Our scheme
is designed to automatically improve the performance of
applications running on heterogeneous CMOS-TFET multi-
cores operating under a fixed power budget, without requir-
ing any effort from the application programmer or the user.
Our scheme combines heterogeneous thread-to-core map-
ping, dynamic work partitioning, and dynamic power par-
titioning to identify energy efficient operating points. With
simulations we show that our runtime scheme can enable
a CMOS-TFET multicore to serve a diversity of workloads
with high energy efficiency and achieve 21% average speedup
over the best performing equivalent homogeneous multicore.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General—Hard-

ware/software interfaces; C.1.3 [Processor Architectures]:

Other architecture Styles— Heterogeneous (hybrid) systems

Keywords

Heterogeneous multicores, TFETSs, power aware systems,
power partitioning

1. INTRODUCTION

Industrial scaling trends [1] show that each step in pro-
cess technology comes with a larger number of cores that
can be fit into a single chip, and yet, the power deliverable
to the chip stays relatively constant. The lack of enough
power to turn on all the cores simultaneously at their peak
frequency manifests itself either as dark silicon where only
a small number of cores can be turned on, or as dim silicon
where all the cores are turned on but execute at very low
voltages/frequencies [2].
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Depending on the characteristics of the application to be
executed on a multicore, the answer to which of the two pos-
sible configurations, i.e., dark silicon or dim silicon, performs
better, can vary. Scalable applications may prefer using a
large number of cores at a low frequency to achieve a higher
energy efficiency. Other applications that do not scale be-
yond some degree of parallelism would rather be restricted
to run on a smaller number of cores (sequential applications
being at one extreme of this case, running on only one core).
In the latter case, the power saved by turning the remain-
ing cores off can be used to increase the clock frequency of
the active cores. Clearly, a general purpose processor with
a goal to perform well on a diversity of workloads must be
optimized for both scenarios.

Heterogeneous multicores employ separate cores for high
performance and low power operation modes. As a result, a
heterogeneous multicore has the potential to achieve better
power and performance characteristics than an equivalent
homogeneous multicore over a variety of workloads. In this
work, we first pose the question: How to design an energy
efficient heterogeneous multicore? We first identify that as
the number of cores increase, the dim silicon approach re-
sults in very low per-core power budgets. When cores are
implemented using the CMOS technology, such a low per-
core power budget forces the transistors to operate at near
or sub-threshold voltages at which CMOS devices show very
poor energy efficiency. Hence, CMOS technology is not very
suitable for a dim silicon approach.

TFET technology [3][4] is a very promising alternative
to sub-threshold CMOS, offering better energy-delay per-
formance in the low voltage regime. Building TFET cores
and employing them in a multicore can significantly im-
prove performance when operating at low per-core power
budgets. Yet, TFETSs are not energy efficient at higher volt-
ages and perform poorly in a dark silicon setting. At such
high voltages, CMOS technology is still the most energy ef-
ficient choice. Motivated by these observations, we identify
a heterogeneous CMOS-TFET multicore as the best solu-
tion to serve a diversity of workloads. However, porting
applications to this heterogeneous multicore is not a trivial
task. Specifically, it involves finding the best performing
thread-to-core mapping, work-to-thread distribution, and
core power distribution.

In this work, we propose an automatic runtime scheme to
extract high performance from heterogeneous CMOS-TFET
multicores that operate under fixed power budgets. Our
scheme can be implemented as a part of the operating sys-
tem (OS) and uses (i) heterogeneous thread-to-core map-
ping (i.e., it can utilize both types of cores simultaneously),
(ii) dynamic work partitioning (i.e., it distributes work un-
equally across threads), and (iii) dynamic power partition-
ing (i.e., it distributes power unequally across cores). This
scheme analyzes the efficiency of the application threads run-
ning on the target heterogeneous multicore and redistributes



the available chip power across cores to improve overall per-
formance. Our specific contributions in this work are:

e We identify device-level heterogeneous CMOS-TFET
multicores as a promising approach to effectively serve a
diversity of workloads.

e We build a core power model starting from device mod-
els. We validate this model by comparing its results with
data reported for existing processors. We use this model
with the emerging FinFET and TFET technologies and con-

struct a CMOS-TFET heterogeneous multicore power model.

e We evaluate a CMOS-TFET multicore under a fixed
power budget and compare it against homogeneous CMOS
and homogeneous TFET multicores. We show that with
simple, homogeneous (i.e., single core type) thread-to-core
mapping and static work partitioning, a heterogeneous mul-
ticore can achieve performance comparable to the best per-
forming homogeneous multicore.

e We propose an automatic runtime scheme that performs
dynamic power partitioning across different types of cores
in the CMOS-TFET heterogeneous processor. This scheme
considers the power/performance tradeoffs and quantities of
different types of cores, and can improve the performance
of a variety of applications running on heterogeneous pro-
cessors with different configurations. We show that, when
used with heterogeneous thread-to-core mapping and dy-
namic work partitioning, this runtime scheme enables our
heterogeneous CMOS-TFET multicore to achieve an average
performance improvement of 21% over the best performing
homogeneous multicore, without any effort from the pro-
grammer or the user.

2. THE CASE FOR A HETEROGENEOUS
CMOS-TFET MULTICORE

In this section, we demonstrate the need for heterogeneous
architectures to cater to a diversity of applications. We fo-
cus our attention on device-level heterogeneity in multicore
processors and examine the viability of using Tunnel-FET
based cores in processor design.

2.1 Power Constrained Multicores

The ITRS roadmap [5] indicates that the maximum allow-
able chip power will remain constant over the next several
generations even amidst technology scaling. This makes the
chip power the most important parameter that constrains
the maximum performance that can be extracted from a
processor. Improving energy efficiency has become a major
goal, which has lead to servers-on-chip with an entire power
budget of a few Watts have been built [6] for web applica-
tions as well as ‘big data’ applications like MapReduce and
Hadoop. The corresponding per-core power comes out to be
less than 1W. power budgets corresponding to less than 1
Watts per-core. Under such restricted power budgets, the
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Figure 1: Power consumption of swim using 8 and
32 cores at a frequency range of 500 MHz to 2 GHz.
The dashed line represents a power budget of 32 W.
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number of active cores and their frequencies must be care-
fully determined to preserve efficiency. Figure 1 shows the
power consumption of swim from the SPEC-OMP bench-
mark suite [7] using an 8-core and a 32-core multicore op-
erating over a range of frequencies. It is observed that the
power demand for 32 cores to run at 2 GHz, which is around
120W, far exceeds a power budget of 32W (1W per core),
which is barely sufficient to turn on 8 cores running at 2 GHz.
Thus the only way of reaching 2 GHz frequency with the 32
core processor is by completely shutting down at least 24
cores, i.e, 24 cores must remain dark. Conversely, we see
that in order to be able to use all the 32 cores, the clock fre-
quency must be limited to less than 1 GHz, i.e, the cores are
run in a dim manner. This dark/dim behavior is common
to many other applications as well (e.g., apsi and wupwise).
These scenarios represent the two extreme operating points,
and which one of the two achieves higher performance de-
pends on the properties of the target application.

2.2 Serving a Diversity of Applications

In order to efficiently map applications onto multicore pro-
cessors under power constraints, two properties of the target
applications must be studied: (1) scalability of the applica-
tion with number of cores, and (2) scalability of the appli-
cation with frequency.

Figure 2 compares the scalability of two applications, swim
and equake, with the number of cores. It can be observed
that while swim scales well even when run on 32 cores, the
speedup of equake is limited when executed on more than
8 cores, in fact degrading when the number of cores is in-
creased from 16 to 32. Hence, equake is not able to utilize
the cores allocated to it as effectively as swim. Analyzing
the scalability of two applications with frequency, Figure 3
shows the speedup of two applications, swim and gafort,
when they are executed on a 32-core processor at a range of
frequencies. As frequency is increased, the speedup achieved
by gafort is higher than swim. In general, applications with
a higher resource utilization in the cores see a higher benefit
from increased core clock frequency.

These application characteristics can be used to find bet-
ter operating points (number of cores, frequencies) that im-
prove performance under a given power budget. For instance,
given a power budget of 1W/core (32W overall) and con-
sidering a baseline configuration with a single CMOS core
running at 500 MHz, a well scaling application like swim
achieves its best performance when running on 32 cores at
1 GHz to give a 52X speedup. On the other hand, equake,
which scales poorly, achieves its optimal speedup of 15X at
2 GHZ with 8 cores. This indicates that different multi-
threaded applications can prefer different operating points
to maximize their performance under a power budget.

2.3 Exploiting Device-Level Heterogeneity
The best configuration for running a particular applica-
tion can be significantly different depending on the prop-
erties of the target application. In the dark silicon case,
cores must be optimized to be efficient at high frequencies,
and in the dim silicon case, they must be optimized for low
frequency operation. As these two requirements are at the
two ends of the power-performance spectrum, they cannot
be satisfied by a single device technology simultaneously.
On the other hand, it is possible to combine two technolo-
gies in implementing a multicore, where one technology is
used to implement low-frequency/low-power cores and an-
other technology is used to implement high-frequency /high-
performance cores. This heterogeneous processor can be a
common platform to serve a diversity of applications with
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Figure 2: Scaling of the parallel regions of swim
and equake under various core counts for a sys-
tem running at 2 GHz. Performance values are
normalized with respect to the 1 core case.
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Figure 4: Variation in dynamic energy with fre-
quency for different transistor technologies.

high performance. While the standard CMOS technology
that can reach high frequencies is a good candidate to be
used for implementing high-performance cores, its low sup-
ply voltage (Vze < 300mV’) operation is extremely inefficient
because of its limited overdrive voltage. Under a small over-
drive voltage, CMOS devices are limited by a 60 mV /decade
minimum sub-threshold slope, which provides a very low
drive current. Stronger drive currents at low supply volt-
age can be achieved by reducing the CMOS threshold volt-
age (V). However, reduced threshold voltage results in an
unacceptable increase in off-state leakage current. There-
fore, the sub-threshold slope of CMOS technology results in
poor Ion/Iops ratio at low voltages, leading to an energy-
inefficient low frequency operation.

Variants of standard high-performance (HP) CMOS de-
vices are low standby power (LSTP) and low-power (LOP)
devices. Figure 4 shows the variation in core dynamic en-
ergy with core frequency for these CMOS-based transistor
technologies. LSTP transistors have a higher oxide thick-
ness than HP CMOS transistors which leads to lower I,
as well as I,fy . While this decreases the leakage power, a
higher V.. is needed for an LSTP transistor to operate at
the same clock frequency as an HP transistor, which in turn
results in a higher dynamic energy consumption. Similarly,
using LOP transistors which operate at a lower V.. but have
a higher threshold voltage also cannot reach better energy
efficiencies at any frequency. As a result, using LSTP or
LOP transistors is not an effective solution for the design of
dynamic energy dominated cores.

Any solution to implement energy-efficient cores must clearly

have a better sub-threshold behavior than CMOS technol-
ogy. Interband Tunnel Field Effect Transistor (TFET) tech-

nology is a very promising alternative to sub-threshold CMOS,

showing a characteristic sub-60 mV /decade sub-threshold
slope. This steep slope brings a good Ion/Iofs ratio at low
voltages, which translates into high drive current and low off-
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Figure 3: Scaling of applications swim and gafort
with clock frequency for a 32 core system. Per-
formance values are normalized with respect to
the 500 MHz case.
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Figure 5: Variation in CMOS and TFET pro-
cessor power at different frequencies for different
number of cores.

state leakage current. Thus, TFET-based cores are clearly
more energy efficient than any of the other technologies at
low frequencies, as shown in Figure 4.

Figure 5 shows the average power consumption of the swim
application when running on both CMOS and TFET-based
homogeneous multicores with 8 and 32 cores. At the low-
est frequency of 500 MHz, 32 TFET cores consume 3.X less
power than 32 CMOS cores. When working under a fixed
power budget, this can translate into more number of cores
being turned on. Consequently, the massive parallel com-
putational capacity brought in by 32 TFET cores can easily
outperform the CMOS configuration when running a scal-
able application such as swim. At low voltages, it is also
possible to operate the TFET at higher clock frequencies
than CMOS. This enables the TFET cores to achieve supe-
rior performances than CMOS cores under power constraints
for highly scalable applications.

When executing poorly scaling applications or sequential
parts of parallel applications, it is better to restrict the entire
power budget to a small number of cores running at a high
operating frequency. The high-frequency optimized CMOS
cores are very suitable for this operating point. From our
profiling simulations we observed that, given a power budget
of 32W, we can typically run only 8 CMOS cores at a peak
frequency of 2 GHz. As a result, we designed a 32 core het-
erogeneous CMOS-TFET architecture with 8 CMOS cores
and 24 TFET cores. This ensures that, when needed, 8
CMOS cores can be executed at the maximum frequency.

3. MODELING CMOS AND TFET CORES

In this section, we first present our FinFET and TFET
device models, and then, describe the method we use to
construct an entire processor model from these devices.

3.1 Device Modeling

There have been numerous experimental demonstrations
of novel tunneling (TFET) devices. The first such demon-
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Figure 6: (a) Structure of an UTB 3D TFET, (b)
structure of a 3D Si FinFET.

stration was an Ing.53Gao.47 As homojunction TFET [8] which
illustrated the concept of a vertical interband tunneling tran-
sistor. The problem of low I,, in homojunction TFETs
was overcome by using a GaAso.1S5bo.9/InAs heterojunc-
tion TFET. On account of the P-N heterojunction being
staggered, and InAs having a lower bandgap (E¢g), this de-
vice was observed to have a higher I,, than a homojunction
TFET. Recently, a vertically-oriented, gate-all-around sil-
icon nanowire was demonstrated, showing 50 mV/decade
sub-threshold slope over 3 decades of drain current [9], thus
experimentally illustrating a sub-60 mV /decade slope. Fur-
ther, a process flow for the creation of a side-gated vertical-
mesa TFET which can be scaled down to achieve an Ultra-

Thin-Body (UTB) double-gated structure has also been demon-

strated [3, 10]. Continuous improvements in vertical 3D
UTB heterojunction tunneling structures are bringing us
closer to the promise of sub-60 mV/decade sub-threshold
slope operation.

Figure 6(a) shows the 3D schematic of a vertically-oriented
UTB TFET, the fabrication of which has been demonstrated
n [10]. Modeling of such a transistor has been performed for
different materials using advanced atomistic simulations [11,
12]. This TFET device is compared against bulk-CMOS de-
vices in 20nm CMOS technology in [4]. However, based on
recent trends [13, 14], it has become clear that beyond 20nm
technology node, instead of bulk-CMOS, CMOS transistors
will be implemented using the tri-gate transistor technology
(i.e., FinFETs). The 3D schematic of a silicon FinFET is
shown in Figure 6(b). The experimental demonstration of
such a transistor for the 20nm technology node has been
shown in [15]. In this work, we work with these emerging
heterogeneous TFET and silicon FinFET transistors.

We performed device level modeling of TFET devices us-
ing TCAD Sentaurus [16]. TCAD simulations for TFETSs
are calibrated with the atomistic simulations [11, 12], the
results of which are shown in Figure 7(a) together with the
device parameters used. The steep slope in this figure shows
that radically different device physics of TFETs allows de-
parture from 60 mV /decade limit imposed by nature on con-
ventional devices such as BJTs and MOSFETs. We verified
that our TCAD simulation results agree with the experimen-
tal TFET data reported in [3, 10]. Similarly, we performed
TCAD simulations for the 20nm Si FinFET. Figure 7(b)
shows that our TCAD simulation of this device is in close
agreement with the experimental data shown in [15].

Using our device models, we obtained the performance
data for a 20nm high performance (low V;) Si FinFET NMOS
and a 20nm heterojunction n-channel TFET, which are shown
in Figure 8. This figure shows the I, versus Lm/Ioff for the
two types of transistors for different operating points along
the 13-V, curve, for a given V.. window, and at two supply
voltages, namely, 1V (high voltage) and 0.3V (low voltage).
From this figure, we observe that at 1V, the Si FinFET out-
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performs the heterojunction TFET both in I,, as well as
Ton/Ioss ratio. However, when the supply voltage is reduced
to 0.3V, the TFET becomes better in I,, and the Ion/Ioys
ratio, compared to the high performance Si FinFET at 0.3V.
Even using a low-power FinFET with high V; exhibits a sim-
ilar behavior, because TFETs are much more energy efficient
at low voltages on account of their sub-60mV sub-threshold
slope. While TFET is preferred at low V.. values less than
0.3V, CMOS is preferred at high V.. values of around 1V.
Table 1 summarizes the performance of the two types of
transistors at 1V and 0.3V.
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Figure 7: (a) Comparison of TCAD simulation with
atomistic simulation for heterojunction TFET [11].
(b) Comparison of TCAD simulation with experi-
mental data for Si FinFET [15].
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Table 1: Summary of transistor performance.

Tech Vee[V] | Ion[uA/um] Iysr[nA/um] | I, /Iy
FinFET 1 1200 5 2 x 10°
TFET 1 850 150 6 x 10°
FinFET 0.3 5.5 1.25 45 x 10°
TFET 0.3 115 6 2 x 10°

3.2 Transistor-to-System Abstraction

Processor-level power-performance comparison for CMOS
and TFET-based processors, including simulations of mem-
ory and datapath elements, was done using a device-to-
system architecture abstraction in [4]. We use a similar
abstraction with two key enhancements in modeling: (1)
our TFET models are calibrated with atomistic simulations
and experimental data, and (2) our CMOS models use an
advanced tri-gate (FinFET) technology rather than an older
bulk-CMOS technology.

The maximum operating frequency of a processor is set
by its critical path, which we model using a ring-oscillator
chain of NAND gates each driving five NAND gates, as
shown in Figure 9(a), resulting in a 45 FO4 delay for the
ring-oscillator. We observe that, using a 45nm bulk-CMOS
model [17], this logic chain is able to accurately model the
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Figure 9: (a) 9-stage ring-oscillator used to model
the critical path in the processor, (b) frequency vs
Vec behavior for the Atom processor, and (c) fre-
quency vs power behavior for the Atom processor.

Vee-frequency behavior of the Intel Atom processor [18], as
shown in Figure 9(b). The switching energy per transistor
is estimated from the ring oscillator. Typical switching fac-
tors obtained during logic benchmarking range from 12.5%
(in logic intensive designs) to 50% (in arithmetic intensive
designs), making an average activity factor of 30% a reason-
able assumption [19]. Using the Atom processor’s transistor
count of 47 million and this 30% transistor switching activ-
ity factor, we were able to reproduce the power-frequency
characteristics of the Atom processor.

In order to model a forward-looking processor, we moved
from the 45nm technology node to 20nm technology node
in our model. Assuming an average IPC of 1, which can be
representative of the 2-issue Intel Atom processor architec-
ture, we obtained the energy per instruction of our target
processor using 20nm Si FinFET and 20nm heterojunction
TFET technology, considering the energy per instruction
to be largely independent of the specific instruction being
executed [20]. In our evaluation, we considered both the
dynamic and leakage energy of the processor.

As observed in Figure 4, on account of the steep sub-
threshold slope, TFETs deliver better performance com-
pared to Si FinFETSs in low-V.. operation (< 0.5V ). Since
the tunneling current saturates for higher Vce (> 0.5V ) val-
ues, TFET processors are less efficient than FinFET based
processors at frequencies in excess of around 1.1 GHz. Due
to this behavior, there is an energy-delay crossover point, be-
low which the TFET processor is more energy efficient and
above which the Si FInFET processor becomes the energy
efficient choice.

3.3 The Manufacturing Barrier: Integrating
TFET and FinFET Technologies

TFET technology is at an exploratory stage and it is too
premature to analyze it from the yield and cost perspec-
tives. However, from an integration perspective, TFET and
FinFET devices can be fabricated on a single chip in a mono-
lithic fashion using a silicon substrate. Such integration has
already been demonstrated through experimental fabrica-
tion of indium gallium arsenide (InGaAs) based Quantum-
Well FETs (QWFETS) on silicon substrate using a meta-
morphic buffer layer growth scheme [21]. Another impor-
tant parameter in the adoption of new technologies is their
sensitivity to process variations. In [22], it is shown that
TFET and FinFET devices are affected similarly from pro-
cess variations. Their work also presents examples of process
variation-aware TFET SRAM cell design.
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4. PORTING APPLICATIONS TO HETERO-
GENEOUS MULTICORES

When executing a multi-threaded application on a CMOS-
TFET heterogeneous multicore, there are two important
questions that must be answered: (1) how will the threads
be mapped to cores, and (2) how will the work be partitioned
across threads? The performance of the target application
can significantly vary based on these decisions, yet analyz-
ing and evaluating alternative schemes to make the right
decision is a time consuming task. In this section, after pre-
senting alternative mapping and work partitioning schemes,
we propose an automatic scheme that can, without any pro-
grammer effort, achieve high performance, by answering a
third question: How should the available power be partitioned
across cores?

4.1 Thread-to-Core Mapping

We first examine how the threads of a multi-threaded ap-
plication should be mapped to the cores of a heterogeneous
multicore. Considering a CMOS-TFET heterogeneous mul-
ticore, two possible methods are homogeneous mapping and
heterogeneous mapping. Homogeneous mapping assumes
that, while running a parallel region of an application, all
threads will use the same type of core. In this case, when
a parallel region starts, a binary decision is performed and
the parallel region is executed either only on CMOS cores
or only TFET on cores. This mapping strategy is used by
traditional accelerator-based systems (e.g., a host proces-
sor with GPGPUs). However, the decision of what type of
core leads to better performance under a fixed power budget
must be made manually and is a non-trivial task.

An alternative way of mapping application threads to a
heterogeneous processor is to run the application on both
types of cores simultaneously. However, cores of different
types will be executing at different operating points, which
can cause significant performance discrepancy. Therefore,
heterogeneous thread-to-core mapping can be expected to
perform well only when used together with a heterogeneity-
aware work partitioning scheme.

4.2 Work Partitioning

The simplest way of partitioning work across the threads
of an application is to distribute the total work equally.
This method is typically preferred in homogeneous systems
where all application threads will be executed on the same
type of core. Running on the same core type results in all
threads completing their computations at about the same
time, minimizing the time during which cores sit idle at
synchronization points. On a loop-level parallelized system,
static work partitioning distributes work statically at com-
pile time, by assigning equally sized chunks of loop iterations
to all threads.

In a heterogeneous multicore, the performance of threads
running on different types of cores can be quite different un-
der a heterogeneous thread-to-core mapping. Under static
work partitioning, it can take some threads significantly
more time to complete their computations. In this case,
threads that complete their work early are forced to wait idle
until all the other threads reach the synchronization point,
which leads to poor processor utilization, and eventually,
poor overall performance. One solution is to use dynamic
work partitioning, the most widely used form of which is dy-
namic loop scheduling [23]. In this scheme, iterations of a
parallelized loop are not distributed equally across threads.
Instead, each thread executes a different number of itera-
tions proportional to its dynamic performance. As a result,



PARTITIONPOWER(interval, pct, CorePower, Ncmos, NTrET)
IPSoLd — 0
direction «— +1
while ( true )
SLEEP(interval)
Powercyos «— ZiGCMOS CorePower|i]
Powerrpgr «— 1 — Powercayos
IPSpew — 216[0,31] instructions(i] * frequency(i]/cycles[i]
if IPSpew < IPSs1a
direction < —1 * direction
end if
if direction = +1
APower «— Powercymos * pct/100
Powercyros «— Powercyos — APower
Powerrppr «— Powerrpgr + APower
else
APower «— Powerrpgr * pct/100
Powercyros «— Powercyos + APower
Powerrrpgr — Powerrrgr — APower
end if
for i € [0, (Ncmos + NrreT — 1)]
if type[i] = CMOS
CorePowerli] <« Powercymos/Ncmos
else
CorePowerli| «— Powerrppr/NrreT
end if
end for
end while

Figure 10: The pseudocode for our dynamic power
partitioning algorithm.

all threads complete their allocated work at about the same
time, maximizing the utilization of the parallel hardware.

4.3 Power Partitioning

In addition to distributing the workload across threads in
the form of loop iterations, the way we partition the avail-
able chip power across cores can also significantly impact the
performance of the system. As the total power is limited,
it must be partitioned across cores such that the processor
executes at an energy-efficient operating point. The opti-
mum power distribution depends on the mapping and work
partitioning policies adopted by the application. In case of
homogeneous mapping and equal work partitioning, divid-
ing power equally across all cores results in almost identical
thread performance. However, for other mapping and work
partitioning schemes, equal power partitioning may not be
the best approach. Instead, adjusting the power distribution
across cores can lead to more efficient operating points for
the heterogeneous multicore.

Consider the combination of heterogeneous thread-to-core
mapping and dynamic work partitioning. While the hetero-
geneous mapping removes the burden of manually finding
the best type of core, dynamic work partitioning eliminates
the barrier-wait problems due to load imbalance. Note that
when two threads of an application are executed on differ-
ent types of cores under an equal per-core power budget,
we can easily calculate how efficiently they are utilizing this
power. For instance, if all cores are running at frequen-
cies below 1 GHz, then clearly TFET cores are operating
more efficiently than CMOS cores. Further, determining
which type of core uses the available power more efficiently
is application-dependent and can even change within an ap-
plication based on the current phase of execution. Therefore,
a runtime scheme that (1) identifies the energy efficiencies
of different types of cores and (2) dynamically repartitions
available power across cores to allocate more power to the
efficient core type can potentially improve the overall per-
formance.

To improve performance of our CMOS-TFET heteroge-
neous multicore under a fixed power budget, we employ a
dynamic power partitioning algorithm based on a “perturb-
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and-observe” method. Our algorithm considers the TFET
cores and CMOS cores as two power domains and partitions
the total chip power across these two domains. Figure 10
gives the pseudocode for this algorithm. At every epoch, a
fraction of the power is taken from one power domain (e.g.,
from TFET) to the other domain (e.g., to CMOS). At the
end of the epoch, we observe whether this action resulted in
an improvement in the total performance in terms of instruc-
tions per second (IPS). If the performance improves, then we
continue to transfer power in the same direction; otherwise,
we reverse the direction of power transfer. Using such a
dynamic scheme also enables us to react to behavioral vari-
ations occurring within the application. Our dynamic power
partitioning algorithm takes the epoch length, percentage of
power to transfer at each epoch, total available chip power,
and the number of cores in either type as input parame-
ters, and hence, is portable across various heterogeneities and
power budgets. By employing power partitioning together
with a heterogeneous mapping and dynamic loop schedul-
ing, our goal is to reach higher performance automatically,
without putting the burden of detailed analysis and testing
on the programmer or the user.

4.4 Overview of Evaluated Schemes

Table 2 shows the schemes tested in our evaluation. Start-
ing from a baseline homogeneous processor that is either
all-CMOS or all-TFET with equal work partitioning and
equal power partitioning (CMOS-Base and TFET-Base),
the first step we take is to switch to a 8-CMOS, 24-TFET
heterogeneous processor. For each multi-threaded applica-
tion, the programmer makes the binary decision of running
parallel regions of the application on 8-CMOS or 24-TFET
cores. Based on the ability of the programmer in making
correct thread-to-core mapping decisions, the performance
obtained varies. The schemes with the best and the worst
mappings are referred to as Hetero-Manual-Best and Hetero-
Manual- Worst, respectively. To explore the benefits of using
all cores in the heterogeneous processor simultaneously (as
opposed to using only one type at a time), we also evalu-
ate the Hetero-Simple scheme which performs heterogeneous
thread-to-core mapping. In the Hetero-DynWork scheme, on
the other hand, we modify the application to be heteroge-
neous multicore-aware by adopting dynamic work partition-
ing. Our goal with this scheme is to evaluate the benefits of
dynamic work partitioning on the heterogeneous system. Fi-
nally, we introduce our dynamic power partitioning scheme
(Hetero-Auto) which also includes heterogeneous mapping
and dynamic work partitioning.

S. EXPERIMENTAL SETUP

5.1 Simulation Infrastructure

We use the Simics full system simulator for running our
simulations [24]. We assume a 32 core system consisting
of 8 CMOS cores and 24 TFET cores as our heterogeneous
processor model. The performance of this system is com-
pared to our baseline system consisting of 32 cores (CMOS
or TFET). The architectural parameters of the simulated
systems are shown in Table 3.

5.2 Dynamic Work and Power Partitioning Im-
plementation

In order to eliminate the effects of load imbalance, we use
dynamic parallel loop scheduling which performs work par-
titioning at runtime. Dynamic loop scheduling can be done
in two ways. In one method, the workload chunk size al-
lotted to each thread is fixed. However, this may not be



. ‘Work Power
Processor Mapping Partitioning Partitioning Code
32 CMOS cores Homogeneous: CMOS Equal Equal CMOS-Base
32 TFET cores Homogeneous: TFET Equal Equal TFET-Base
Homogeneous: CMOS or TFET Equal Equal Hetero-Manual-Best
8 CMOS Homogeneous: CMOS or TFET Equal Equal Hetero-Manual-Worst
and Heterogeneous: CMOS and TFET Equal Equal Hetero-Simple
24 TFET cores Heterogeneous: CMOS and TFET Dynamic Equal Hetero-DynWork
Heterogeneous: CMOS and TFET Dynamic Dynamic Hetero-Auto

Table 2: Evaluated multicore configurations. The performance of these schemes are presented in Section 6.

Parameter Value

No. of Cores (Homogeneous) 32 CMOS or 32 TFET

No. of Cores (Heterogeneous) 8 CMOS and 24 TFET

L1 D/I-Cache Private, 32KB each, 4-ways

set-assoc., 1-cycle latency

L2 Cache Shared, 4MB, 16-ways set-assoc.

10-cycles latency (2GHz)

Memory Access Latency 120-cycles (at 2GHz)

DVFS Epoch Size 1lms
Power Partitioning Epoch Size 5ms
Power Transfer Percentage 10%

Table 3: System parameters.

optimal, since a large chunk size can still result in load im-
balance across threads and a small chunk size can signifi-
cantly increase the overhead incurred during the request of
a new chunk. A modified version of dynamic scheduling is
guided scheduling [23], where the chunk size is not fixed, but
variable. In guided scheduling, the chunk size starts large
but gradually reduces as more loop iterations are completed,
which achieves a smaller scheduling overhead. We modified
our target benchmarks such that, all OpenMP parallelized
loops use guided scheduling.

We implemented power partitioning as a part of our simu-
lator. At every epoch, the total number of instructions exe-
cuted by all cores in the processor is calculated and the total
number of instructions per second (IPS) is obtained. This
calculation can be implemented as an OS daemon process
on a real system. In this case, an interrupt will be generated
at every epoch, causing the daemon to read hardware per-
formance counters and recalculate the total IPS in the last
epoch. Comparing the total IPS for the current and previ-
ous epochs, it either decides to move power from the TFET
domain to the CMOS domain or vice versa. The result of the
power partitioner is a vector of per-core power budget values
whose entries are stored in per-core power budget registers.
Power re-distribution is carried at a period of 5 ms.

Our hardware DVFS implementation reads per-core power
budget values from special purpose registers at every epoch.
For each core, it determines the ratio of the power of the core
to its power budget. It scales the voltage and frequency of
the core such that it will match its allocated power budget
in the next epoch. Note that in our heterogeneous CMOS-
TFET multicore, DVFS is carried out on a per-core basis so
as to take the difference in the power and performance char-
acteristics of different types of cores into account. Assuming
a 50 mV /ns latency for on-chip per-core voltage regulators
as presented by Kim et al. [25] and a PLL locking time
of a few microseconds, we set our DVFS epoch length to
be 1 ms. By selecting such a large DVF'S epoch length, we
ensure that the performance overheads due to DVFS are
negligible. Note that our baseline systems also employ per-
core DVFS, in which case, the energy and area overheads
of having per-core voltage domains is common to both our
baseline homogeneous and proposed heterogeneous multi-
cores. In our implementation, we assign DVFS levels at
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frequency intervals of 125 MHz, ranging from 500 MHz to
2 GHz.

5.3 Benchmarks

For the purpose of running our simulations, we use ap-
plications with train input sizes from the SPEC OMP 2001

suite [7]. These applications are parallelized using OpenMP [26]

pragmas. We ran our simulations from the start until the
end of each application, and measured the performance im-
provement based on the reduction in execution time of the
application.

6. EXPERIMENTAL RESULTS

To evaluate the performance of our 32-core heterogeneous
processor with 8 CMOS and 24 TFET cores, we consider
a 32-core homogeneous CMOS and a 32-core homogeneous
TFET processor as baselines. We assume a fixed power bud-
get of 32W (i.e., IW per core) in all evaluated configura-
tions (we later analyze sensitivity to power budget). In all
configurations, sequential regions of the target applications
are executed on CMOS cores, except with the homogeneous
TFET system where the sequential regions are also executed
on TFET cores. During the execution of the applications, if
any cores are detected to be idle, then the power budgets of
the idle cores are redistributed among the active cores. For
instance, only one core can be active during the sequential
region of an application, in which case this core is allocated
the entire power budget of 32W.

6.1 Hetero-Manual-Best vs. Baseline
We first compare the performance of our heterogeneous

multicore against both homogeneous baseline processors, namely,

a 32-core CMOS and a 32-core TFET multicore. Figure 11
shows the performance of our baseline and proposed configu-
rations. We also include a Best-Base bar in this figure, which
represents the maximum of CMOS-Base and TFET-Base
performance, and normalize all bars with respect to Best-
Base. The Hetero-Manual-Best scheme assumes that the
application programmer maps parallel regions exclusively to
either CMOS or TFET cores of the heterogeneous proces-
sor, whichever one achieves higher performance. We observe
that, on average, our heterogeneous CMOS-TFET multi-
core performs within 4% of the Best-Base performance. In
case of applications like apsi and equake, we see that apsi
performs best on 32-TFET cores and equake performs best
on 32-CMOS cores. In both cases, by using a heteroge-
neous processor (without any heterogeneity-aware dynamic
schemes), we are able to reach the performance of the best
homogeneous system, which shows that our heterogeneous
multicore is suitable for serving a variety of applications.

6.2 Hetero-Manual-Best vs. Hetero-Manual-
Worst

When comparing our heterogeneous multicore against the

baseline systems, we assumed that the programmer is capa-



ble of making perfect mapping decisions. In other words, the
programmer analyzes each application and decides whether
it is better to run the parallel regions of the application
on the CMOS or TFET part of the heterogeneous proces-
sor. Making a bad thread mapping decision (e.g., mapping
threads to CMOS cores although TFETSs would perform bet-
ter) can lead to sub-optimal performance. In Figure 12,
we compare the two programmer-directed mapping schemes
Hetero-Manual-Best and Hetero-Manual-Worst, which rep-
resent the best and worst mapping schemes for the target
applications. From this figure we observe that bad map-
ping decisions can degrade the heterogeneous system per-
formance by 32% on average, which easily eliminates any
benefit of using the heterogeneous system. Therefore, mak-
ing correct mapping decisions on heterogeneous systems is
key to optimizing performance.
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Figure 11: Performance of the baseline homoge-
neous and the proposed heterogeneous multicores.
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Figure 12: Performance comparison of the best and
worst thread mappings on our CMOS-TFET hetero-
geneous multicore.

6.3 Hetero-Auto vs. Hetero-Manual-Best
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Figure 13: Performance of our CMOS-TFET mul-
ticore with and without dynamic work and power
partitioning schemes.

We now evaluate our proposed dynamic power partition-
ing scheme and compare its performance against that of the
best programmer-directed mapping. This dynamic scheme is
performed automatically by a runtime system and requires
no effort on the programmer’s part. Note that, while the
programmer-directed mapping uses only one type of core
at any time, our dynamic scheme uses both types of cores
simultaneously. Further, applications running under our
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scheme also use dynamic work partitioning, whereas the
manual scheme assumes a static, equal work partitioning.

Figure 13 shows our results with the two schemes, as well
as two intermediate schemes. The Hetero-Simple scheme
uses the heterogeneous CMOS-TFET processor with only
heterogeneous mapping, i.e., it employs neither dynamic
work partitioning nor dynamic power partitioning. We can
see that, heterogeneous mapping alone makes our hetero-
geneous multi-core perform 4% better than the baseline.
Adding dynamic work partitioning on top of heterogeneous
mapping (Hetero-DynWork) brings an additional 12% per-
formance improvement. Finally, we observe that, on aver-
age, our dynamic power partitioning scheme (Hetero-Auto)
performs 21% better than the best baseline performance.

In conclusion, superior sub-threshold characteristics of
TFETSs enable them to operate at points that cannot be re-
alized by CMOS devices. Hence, by incorporating TFET
devices, heterogeneous multicores can achieve higher perfor-
mance, and serve a wider variety of applications. It is true
that this improvement comes with an additional cost of using
TFET technology and integrating CMOS and TFET tech-
nologies. However, a recent technology change to tri-gate
transistors provided 18-37% improvements at the device-
level [13], at a similar cost. Hence, we believe that the 21%
system-level improvement presented in this work is very sig-
nificant.

6.4 Runtime Characteristics

Figure 14 shows the dynamic variation in power consump-
tion of wupwise application for the CMOS baseline (middle)
and CMOS-TFET heterogeneous multicore (top), as well as
the number of active cores (bottom). The total power con-
sumption of both systems follow a similar trend: the entire
power budget can be utilized in parallel regions, but sequen-
tial regions use only a fraction of available power as only a
single core is active. The top figure also shows how our dy-
namic power partitioning scheme distributes the chip power
across CMOS and TFET domains, which results in an im-
proved overall performance.
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Figure 14: Power consumed by heterogeneous (top)
and homogeneous (middle) systems, and number of
active cores (bottom) over time (wupwise).

6.5 Sensitivity Analysis

As part of our sensitivity analysis, we show the perfor-
mance of our heterogeneous processor under varying power
budgets and ratios of CMOS and TFET cores.
e Sensitivity to Power Budget: Our results with the
8-CMOS, 24-TFET multicore with different power budgets
for wupwise are shown in Figure 15. We observe that, for
low power budgets, our heterogeneous multicore achieves a



higher speedup. The reason for this behavior is that when
power is scarce, cores in the homogeneous CMOS system
are forced to operate at very inefficient operating conditions
when compared to TFET cores employed in our hetero-
geneous processor. On the other hand, the homogeneous
TFET processor still suffers from the limited maximum fre-
quency of TFETSs, which significantly degrades sequential
region performance. In contrast, the heterogeneous mul-
ticore is able to utilize the available power more efficiently,
leading to significant speedup. Since future processor trends
point to a decrease in available power per core, we believe
that the performance improvement obtained by the hetero-
geneous CMOS-TFET multicore will increase even further.
e Sensitivity to CMOS-TFET Core Ratio: Figure 16
shows the variation in speedup with the number of CMOS
cores in our 32 core processor. The two benchmarks demon-
strated in this figure, namely, wupwise and apsi, show differ-
ent trends as the CMOS core quantity is increased. wupwise
scales well with number of cores and prefers running at low
frequencies on the largest possible number of TFET cores.
Yet, a single CMOS core is needed to achieve high perfor-
mance while executing the sequential regions of the appli-
cation. Therefore, neither the CMOS-only nor the TFET-
only baseline performs satisfactorily and we achieve a per-
formance improvement of up to 37% for the single CMOS
core case. On the other hand, the scalability of apsi is lim-
ited, on account of which it prefers running on a moderate
number of CMOS cores. In this case, the best performance
improvement of around 10% is observed with the 4 and 8
CMOS core systems. Having more or less number of CMOS
cores results in a shift in the operating point of all CMOS
cores and leads to a relatively inefficient execution.

We also experimented with different power transfer per-
centages and found that while amounts higher than 10%
lead to oscillations, smaller amounts (large enough to trig-
ger DVFS level changes) still perform satisfactorily.
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Figure 15: Performance of CMOS-TFET multicore
under different power budgets(wupwise).
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Figure 16: Performance of CMOS-TFET multicore
for varying number of CMOS cores.

7. RELATED WORK

The ideas presented in this work can be distinguished from
the prior work at two main points: constructing hetero-
geneous multicores and mapping applications to heteroge-
neous multicores. There have been various prior works on
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heterogeneous multicores, most of which consider architec-
tural heterogeneity and process variations in multicore pro-
cessors. [27] proposes a heterogeneous multicore processor
to exploit different points in the power/performance space
in an application’s execution. [28] shows that heterogeneous
multicores can bring significant power reduction for similar
performance or significant performance improvement for the
same power budget. [29] proposes a dynamically reconfig-
urable processor that can adapt itself to changing workload
behavior dynamically. Showing that critical sections in ap-
plications can also be causes for serialization, [30] illustrates
use of high performance core for critical section execution
and low power worker cores for parallel execution. An anal-
ysis of heterogeneous computing using on-chip custom logic,
reconfigurable logic, and GPGPU cores is performed in [31].
[32] uses specialized processors with high energy efficiency to
fight against the power budget. Various prior works [33, 34,
35] focused on process variations, which is an unintentional
source of heterogeneity in multicores. The common goal in
these work is to address performance asymmetry across cores
by finding the voltage and frequency levels that maximize
performance.

There has been only a handful of prior work on device
level heterogeneity. In [4], TFET devices are used to de-
sign processor cores that have very high efficiency at low
frequencies. The authors show large improvements in en-
ergy efficiency of embedded processors by running sequen-
tial applications on TFET cores at lower frequencies. [36]
presents a heterogeneous multicore processor running multi-
threaded applications under DVFS. They observe that, due
to the dynamic behavior of applications and the unequal
distribution of work, most of the execution time is spent at
low frequencies. Exploiting the fact that TFET devices can
provide significant energy savings at those frequencies, they
propose a dynamic thread migration scheme across TFET
and CMOS cores.

Most of the prior work in multicore heterogeneity is based
on architectural heterogeneity and are orthogonal to what
is presented in this work, and the works in device level het-
erogeneity used TFET devices only as a way to improve the
energy-delay product of processors by reducing its power
consumption, sometimes even sacrificing from performance.
In contrast, in this work, our primary target is to achieve
the maximum possible performance while working under a
maximum power budget, which has not been studied in any
of these works.

Various efforts have also been made to address the prob-
lem of how to map applications to multicore processors. In
[37], the behavior of commercial applications running on
asymmetric multicores is analyzed. The authors indicate
that the application itself needs to be aware of asymme-
try, and stress that when running multithreaded OpenMP
applications on heterogeneous systems, guided scheduling
typically performs better. [38] analyzes multithreaded ap-
plications running on a frequency-heterogeneous real mul-
ticore system and points out the use of hardware counters
in quantifying application progress, which can in turn be
used to determine the best number of threads to use at run-
time. [39] also indicates the difficulty in mapping applica-
tions to cores on a heterogeneous processor and indicate that
this is no longer a task that can easily be performed by the
programmer. To simplify the process, they propose an au-
tomated method that performs runtime adaptive mapping
of computations to processing elements. These prior works
agree on the fact that simple static work partitioning con-
structs do not perform well for heterogeneous processors and
some form of dynamic load balancing is required to better



make use of the performance asymmetry across cores. In
an effort to efficiently port applications to heterogeneous
processors, these prior work (i) run cores at their respec-
tive maximum frequencies without being concerned about
power limitations (which required dynamic work partition-
ing due to performance imbalance) [27, 40], (ii) adjust the
frequency/voltage of different types of cores so that static
scheduling can still perform satisfactorily [33, 34, 35], or (iii)
exploit architectural heterogeneity solely from a perspective
that accelerates sequential or critical regions of applications
[30, 29, 41]. None of the prior works consider accompanying
dynamic work partitioning across application threads with
dynamic power management across cores as a method to
better utilize heterogeneous multicore processors, which is
another contribution we make in this work.

8. CONCLUSIONS

ITRS projections for multicore chips indicate continuous
decrease in per-core power budget which requires cores to be
optimized to consume very low power. However, low power
optimized homogeneous multicores cannot satisfy the needs
of sequential applications, sequential parts of parallel ap-
plications, or applications with limited scalability. In such
cases, heterogeneous multicores that use different types of
cores for different purposes can perform better. However, it
is not a straightforward task to efficiently port an application
to a heterogeneous multicore. Extracting high performance
from a heterogeneous processor requires both application-
specific and processor-specific information and cannot be ef-
ficiently performed by the programmer. In this paper, we
attacked the problem of how to extract the best performance
from a device-level heterogeneous CMOS-TFET multicore.
We proposed a runtime system that employs dynamic power
partitioning to extract high performance from heterogeneous
multicores without requiring any extra effort for application
porting. Our power partitioning scheme works in conjunc-
tion with heterogeneous thread mapping and dynamic work
partitioning, and distributes the available power across cores
of the heterogeneous processor in an attempt to achieve bet-
ter performance. Our results show that, on an average, un-
der a fixed power budget of 1W per core, an 8-CMOS 24-
TFET heterogeneous multicore with dynamic power parti-
tioning can achieve 21% performance improvement over the
best equivalent homogeneous multicore.
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