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Reducing power consumption has become one of the primary challenges in chip design, and therefore sig-
nificant efforts are being devoted to find holistic solutions on power reduction from the device level up to
the system level. Among a plethora of low power devices that are being explored, single-electron transistors
(SETs) at room temperature are particularly attractive. Although prior work has proposed a binary decision
diagram-based reconfigurable logic architecture using SETs, it lacks an automatic synthesis algorithm for
the architecture. Consequently, in this work, we develop a product-term-based approach that synthesizes a
logic circuit by mapping all its product terms into the SET architecture. The experimental results show the
effectiveness and efficiency of the proposed approach on a set of MCNC benchmarks.
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1. INTRODUCTION
As technology scaling enables packing of billion transistors into a single chip, power
consumption becomes one of the primary bottlenecks of continuously meeting Moore’s
law. At the system level, there has been a paradigm shift from frequency scaling of a
monolithic processor to multiple slower computing nodes that communicate through
a common network fabric [Keckler et al. 2009]. A tight power budget constraint is
one of the primary reasons that causes this paradigm shift. Moreover, leakage power
is becoming a dominant source of power consumption and several works have looked
into mitigating this power wastage [Keating et al. 2007; Piguet 2006].
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Fig. 1. (a) Node devices. (b) Node devices realized by controlling nanowires with wrap-gate SETs. (c) A
BDD-logic representation of a 2-bit XOR. (d) The implementation of the 2-bit XOR in (b) using nanowires
controlled by wrap-gate SET devices.

On the device level, as the power-delay product reaches quantum limits, a plethora of
new device concepts are being explored to exploit tunneling in semiconductor layers as
the operation basis. These novel device structures use significantly low-drive current
of the order of a few electrons. Numerous demonstrations of the room temperature
operation of Single-Electron Transistors (SETs) have proved that these devices are
very attractive as a possible way for extending Moore’s law.

Majority of these ultra-low power emerging nanodevices suffer from low transcon-
ductance and degraded output resistance, making it essential to coexplore an emerging
device design in conjunction with a non-CMOS logic architecture. To this end, a novel
binary decision diagram (BDD)-based [Bryant 1986] logic architecture was proposed
as a suitable candidate for implementing logic using ultra-low power nanodevices
[Kasai et al. 2001]. Then, the BDD of a combinational circuit is mapped onto a hexag-
onal nanowire fabric controlled by Schottky wrap gates [Hasegawa and Kasai 2001].

To implement a BDD, each BDD node corresponds to a node device in the hexago-
nal fabric. As shown in Figure 1(a), a node device works like a switch that receives
the messenger electrons from a preceding device through the entry branch and sends
the electrons to a following device through either the left (0) or the right (1) exit
branches according to the control variable (xi). The node device can be realized by
controlling nanowires with wrap-gate SETs as shown in Figure 1(b) [Liu et al. 2011].
Each exit branch (left or right) corresponds to a nanowire and its conductivity is con-
trolled by a wrap-gate SET that has two operating modes: active high and active low.
Furthermore, all the node devices at the same row in the hexagonal fabric are con-
trolled by a single variable, that is, a primary input. The value of the given function is
determined by observing which terminal the messenger electrons from the root node
reach. For example, Figure 1(c) shows a BDD-logic representation of a 2-bit XOR. The
electrons reach the 1 terminal when a != b. Figure 1(d) shows the implementation of
this 2-bit XOR BDD-logic using nanowires controlled by wrap-gate SET devices.
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From the viewpoint of current flowing, the behavior of the hexagonal fabric can be
considered as that there is a current detector at the root that measures the current
(if any) coming from the current source at the 1 terminal. The value of the function
is determined by checking whether the current can be detected at the top by passing
through a conducting path established by the input variables.

However, the realization of the BDD architecture in Kasai et al. [2001] is fixed and
not amenable to functional reconfiguration. This is because the approach selectively
etches all paths that do not lead to the 1 terminal and also customizes the edges of
a hexagon to either be a conducting nanowire or have a wrapped gate. Consequently,
this structure is not very regular and cannot be restructured to implement a different
function due to the physical etching process involved in its realization. Furthermore, if
any of the nanowire segments or the wrap gates is defective, the whole circuit becomes
non-functional. This is a significant limitation considering that nanowires and few-
electron nanodevices have traditionally suffered from the variability and reliability
issues.

To solve the problem, a reconfigurable version of SET using wrap gate tunable tun-
nel barriers was proposed [Eachempati et al. 2008] and the in-depth simulation to
study the electrostatic properties was presented [Saripalli et al. 2010]. This SET can
operate in three distinct operation states: a) active, b) open, and c) short state based
on the wrap gate bias voltages. Such programmability leads to immense flexibility in
designing a circuit. The simulation shows that this SET can provide an order of
magnitude lower energy-delay than CMOS device [Saripalli et al. 2010].

However, the synthesis of a BDD using the SET array in [Eachempati et al. 2008]
is manual rather than automatic. The reason is that mapping a reduced ordered BDD
(ROBDD) into a planar SET array could be very complicated, especially when the BDD
has crossing edges, which is typical in minimized BDDs. In this work, we address
this mapping problem and propose an automatic mapping approach. Instead of map-
ping a BDD directly, the proposed approach first divides a BDD into a set of product
terms that represent the paths leading to the 1 terminal in the BDD. Then, it sequen-
tially maps these product terms. Because both the mapping order of the product terms
and the variable order in the product terms affect the mapping results, we propose
four product term-sorting heuristics [Chen et al. 2011] and one variable-reordering
heuristic to reduce area cost. Additionally, the automatic mapping approach incorpo-
rates the granularity and fabric constraints that are imposed in order to decrease the
number of metal wires used for programming the SET array and for supplying the
input signals, respectively [Eachempati et al. 2008].

We conduct experiments on a set of MCNC benchmarks [Yang 1991]. The experimen-
tal results show that the proposed approach can complete mapping within 1 second for
most of the benchmarks.

Recent experimental work [Liu et al. 2011] has shown a wrap-gate SET device which
is capable of operating in three distinct modes: a) active, b) open, and c) short state.
The schematic of this device is shown in Figure 2(a) and the SEM image of the same
is shown in Figure 2(b). Low temperature experimental characteristics of this device,
shown in Figure 2(c), shows Coulomb oscillations, thus proving SET mode operation.
Measured characteristics in Figure 2(d) shows that this device can operate in three
different modes, thus showing that this experimental device is a practical realization
of the reconfigurable SET device proposed in Eachempati et al. [2008]. Furthermore,
the development of SETs at room temperature has been significantly improved. A Si-
based SET with a 2nm nanodot, developed using pattern-dependent oxidation was
demonstrated [Shin et al. 2010]. The electron energy-level separation of this device
has been estimated to be 0.87eV (∼35kT at 300K), thus making it suitable for room
temperature operation. Thus, an automatic synthesis algorithm, which is the main
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Fig. 2. (a) Schematic of wrap-gate SET device. (b) SEM image of experimental wrap-gate SET device. (c)
Measured low temperature (4.2K) Coulomb oscillations of experimental device. (d) Experimental demon-
stration of reconfigurable operation in three separate modes.

Fig. 3. (a) A SET array fabric. (b) An example of a XOR b.

contribution of this work, allows taking advantage of these novel energy-efficient de-
vices to allow efficient realization of low-power logic circuits.

The rest of this article is organized as follows: Section 2 uses an example to demon-
strate the problem considered in this article, and introduces some notations. Sec-
tion 3 presents the proposed approach for mapping product terms into a SET array.
Sections 4 and 5 introduce four product term-sorting heuristics and one variable-
reordering heuristic, respectively. Section 6 presents the overall mapping flow. Sec-
tion 7 discusses and addresses two mapping constraints. Finally, the experimental
results and conclusion are presented in Sections 8 and 9.

2. BACKGROUND
2.1. An Example
A SET array can be presented as a graph composed of hexagons. As shown in
Figure 3(a), like the hexagonal fabric mentioned above, there is a current detector
at the top that measures the current coming from the bottom of the hexagonal fabric.
All the vertical edges of the hexagons are electrical short. All the sloping edges can be
configured as active high, active low, short or open individually. An active high edge is
controlled by a variable x. It is conducting and non-conducting when x = 1 and x = 0,
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Fig. 4. An example of eliminating the crossing edges in an ROBDD by node duplication. (a) The original
ROBDD. (b) The resultant BDD.

respectively. Conversely, an active low edge is an electrical opposite of an active high
edge and it is controlled by a variable x′.

A Boolean function can be implemented using a SET array. All the active edges at
the same row of the hexagonal fabric are controlled by a single variable, that is, a
primary input (PI). The PIs determine whether there exists a path for the current to
pass through, and thus, be detected at the top. If so, the functional output of the array
is 1; otherwise, it is 0. For example, Figure 3(b) shows a SET array implementing a
XOR b. When a = 1 and b = 0, the current can be detected by passing through the left
path. However, if a = 1 and b = 1, the current cannot be detected.

Thus, the addressed problem of this work is synthesizing a given Boolean function
into a SET array with minimized area, that is, the number of configured hexagons.

Previous work [Eachempati et al. 2008] tries to manually map a Boolean function
by directly mapping its BDD into a SET array. However, the mapping process could
be very complicated due to the structural difference of a BDD and a SET array. For
example, an ROBDD usually has some crossing edges. Since a SET array is a planar
architecture, many efforts are required to avoid having the crossing edges in the
ROBDD when mapping it into a SET array. Node duplication could be a trivial method
for solving this crossing edge issue while not considering the area overhead. For
example, we can eliminate the crossing edges in Figure 4(a) by duplicating the node
d and the terminals. The resultant BDD having more nodes is shown in Figure 4(b).
Additionally, determining the exact location of each ROBDD node in a SET array is a
challenge. Thus, to address this problem, we propose a product term-based method. It
first collects all the paths that lead to the 1 terminal in the ROBDD, that is, product
terms. Then, it maps each product term into a path in the SET array. The proposed
method simultaneously avoids the crossing edge and the BDD node mapping issues.

For example, the product terms of a XOR b are 10 and 01. Using the proposed method,
we first map 10 and then 01. Finally, we obtain the resultant SET array as shown in
Figure 3(b), where the left path is configured for 10 and the right path is for 01.

2.2. Notations
For ease of discussion, we use an abstract graph to present a SET array. Compared
to Figure 3(a), only the configurable edges (i.e., sloping edges) are preserved as shown
in Figure 5. In this diamond fabric, each node n, that is, the root of a pair of left and
right edges, has a unique location (x, y). Based on the root node located at (0, 0), which
is below the current detector, the y value increases from top to bottom. The x value
increases and decreases from center to right and left, respectively.

For simplification, let n.left and n.right denote the status of the left and right edges
of a node n, respectively. The status could be empty, high, low, short, or open. empty

ACM Journal on Emerging Technologies in Computing Systems, Vol. 9, No. 1, Article 5, Pub. date: February 2013.



5:6 Y.-C. Chen et al.

Fig. 5. An abstract diamond fabric.

indicates the edge is not configured yet (is used primarily for algorithm illustration).
high, low, short, and open indicate the edge is configured as active high, active low,
short, and open, respectively. Additionally, let n(x,y) denote the node located at (x, y).

3. AUTOMATED MAPPING
In this section, we first discuss how to compute the product terms of a given Boolean
function. Then, we present the proposed method for mapping the product terms into a
SET array. Here, we first assume that each edge in a SET array can be configured in-
dependently without any constraint. In Section 7, we will extend the mapping method
considering the granularity and fabric constraints.

3.1. Product Term Computation
To compute the product terms of a given Boolean function, we first build its ROBDD.
Next, we traverse the ROBDD to collect the paths that lead to the 1 terminal. In this
work, we use the CUDD package [Somenzi 2009] to build ROBDDs and collect the
product terms.

Since we map the product terms one by one and each product term corresponds
to a path in a SET array, the number of product terms we consider could af-
fect the mapping results. In general, more product terms result in larger area
cost. Thus, before collecting product terms, we will try to minimize the ROBDD by
performing BDD reordering. For simplification, we use the BDD reordering heuristic
CUDD REORDER SYMM SIFT in the CUDD package as it achieves better reduction
for most benchmarks, compared to the other heuristics provided by the CUDD pack-
age. However, because the BDD reordering operation is originally used to minimize the
number of BDD nodes instead of product terms, we only adopt the reordering result
when the number of product terms is reduced after reordering.

Note that although there are other methods, like Espresso1, which could compute
more concise product terms, we use the BDD-based computation method, because it
ensures that each minterm appears in only one product term. As a result, when we
map each product term into a path in the SET array, exactly one path is conducting at
a time. Having multiple conducting paths leads to a higher fanout number that is not
preferred for SET devices due to their low-drive strength.

3.2. Product Term Mapping
After computing product terms, we map these product terms. Our objective is to exactly
configure a path in the SET array for each product term, and avoid constructing a path
that corresponds to an invalid product term.

1Expresso. http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm.
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Fig. 6. A mapping example. (a) Product terms. (b) The mapping result of p0. (c) The mapping result of
p0 + p1. (d) The mapping result of p0 + p1 + p2. (e) The mapping result of p0 + p1 + p2 + p3. (f) The mapping
result of p0 + p1 + p2 + p3 + p4. (g) The final mapping result.

Given a product term p, we start from the root node, and find or configure an edge
for each bit in p from the first bit to the last bit. The mapping rules are as follows:
When the bit value under consideration is 1 (0), we find an active high (low) edge for
it if applicable; otherwise, we configure an edge as active high (low) for it. However, if
the bit value is – (don’t care), we find a short edge if applicable or configure an edge as
short for it. After all the product terms are mapped, we finally configure the edges that
are not configured yet as open.

We use an example in Figure 6 to demonstrate the mapping approach. There are five
product terms, p0 = 0100, p1 = 00 – –, p2 = 11 – –, p3 = 1000, and p4 = 101– as shown in
Figure 6(a). They are exactly the product terms of the example in Figure 4. First, let
us consider p0 = 0100. Starting from the root node n(0,0), we first configure n(0,0).left as
low for the first bit 0. Next, we configure n(–1,1).right as high for the second bit 1. Using
the same method, we configure both n(0,2).left and n(–1,3).right as low for the last two
bits 00. The mapping result is shown in Figure 6(b). Here, the decision of configuring
the left edge or the right edge of a node depends on its location (x, y). If x < 0, we first
try to configure its right edge. If inapplicable, we then try to configure its left edge.
Conversely, if x ≥ 0, we try the left edge first and then the right edge. This method
could compress the mapping result to reduce area cost.

Next, for p1 = 00 – –, because the first bit is the same as that of p0, we partially
reuse this mapping result. Then, we configure n(–1,1).left as low for the second bit 0.
For the third bit 1, we do not configure n(–2,2).right as short for it. This is because if
we do so, we then need to configure n(–1,3).left as short for the last bit –, and it will
construct a path n(0,0) → n(–1,1) → n(0,2) → n(–1,3) → n(–2,4), which corresponds to an
invalid product term 010–. Thus, we configure both n(–2,2).left and n(–3,3).right as short
for the last two bits. The mapping result is shown in Figure 6(c).

For p2 = 11 – –, after we configure n(0,0).right as high for the first bit 1, we do not
configure n(1,1).left as high for the second bit 1. The reason is similar to that of mapping
p1. If we configure n(1,1).left as high, we then need to configure both n(0,2).right and
n(1,3).left as short for the last two bits, constructing a path which corresponds to an
invalid product term 01 – –. Thus, we configure n(1,1).right as high for the second bit
1, and then configure both n(2,2).left and n(1,3).left as short for the last two bits. The
mapping result is shown in Figure 6(d).
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Fig. 7. Incorrect mapping examples.

Next, let us consider p3 = 1000. After finding n(0,0).right = high for the first bit 1,
we consider to configure n(1,1).left as low for the second bit 0. Because n(0,2).left = low
and n(–1,3).right = low are compatible to the last two bits 00. We can safely configure
n(1,1).left as low. The mapping result is shown in Figure 6(e).

For p4 = 101–, we first reuse n(0,0).right = high for the first bit 1. Next, we do not
reuse n(1,1).left = low for the second bit 0. This is because n(0,2).left = low is not compat-
ible to the third bit 1, and if we then configure n(0,2).right as high for the third bit 1, it
will construct a path corresponding to an invalid product term. Thus, we expand the
structure by configuring both n(2,0).left and n(2,0).right as short, and start from n(3,1)
to map the last three bits 01–. The mapping result is shown in Figure 6(f). Finally, we
configure all the non-configured edges as open, and obtain the final mapping result in
Figure 6(g).

To avoid constructing an invalid path, we need to prevent two paths from merging
and then branching during mapping. Thus, when we detect a merging node, like n(–1,3)
for p1, and n(0,2) for p2, p3, or p4, we will check if there exists only one path from the
merging node and if the path is compatible to the remaining bits. If not, there will exist
an invalid path. As a result, we prevent the paths from merging. With this checking
rule, each path from top to bottom exactly corresponds to one product term. In addition,
from the viewpoint of conducting paths, this checking rule is not enough and we have
to add another rule considering the conducting path issue. Figure 7(a) and Figure 7(b)
show two mapping examples, which are incorrect mapping results while satisfying the
merging and branching rule.

In Figure 7(a), when the input pattern is 11101, which is not a minterm, the current
can be detected at the top. This is because the right edge of n(–1,3), the left edge of n(1,3),
and the right edge of n(1,3) as highlighted are conducting simultaneously. This partial
conducting path forms like a bridge that connects two paths such that the current can
pass through the path n(1,5) → n(2,4) → n(1,3) → n(0,4) → n(–1,3) → n(0,2) → n(–1,1) →
n(0,0). In addition, a partial conducting path also could be composed of the edges at the
different rows. For example, Figure 7(b) shows a partial conducting path that crosses
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ALGORITHM 1: Product Term Mapping
Input: An unconfigured SET array and product terms PTs.
Output: A configured SET array.
Configure n(0,0).left and n(0,0).right based on the first bit values of the product terms in PTs;
for each product term t in PTs do

if LeftConfigure(t, 0, 0) then
continue;

end
if RightConfigure(t, 0, 0) then

continue;
end
Expand(t);

end
Configure all the edges that are not configured yet as open;

two rows as highlighted. This path, n(3,3) → n(2,2) → n(1,3) → n(0,4) → n(–1,3), constructs
an invalid conducting path for the input pattern 11111.

In an abstract diamond fabric, a single diamond has two upper edges and two lower
edges. A necessary condition for causing a partial conducting path is that there exist
two pairs of two adjacent conducting edges: one pair is two lower edges of a diamond
that could be conducting simultaneously, and the other pair is two upper edges of a di-
amond that could be conducting simultaneously. For example, in Figure 7(a), the right
edge of n(–1,3) and the left edge of n(1,3) are the two lower edges of a diamond, and the
left and right edges of n(1,3) are the two upper edges of a diamond. One simple method
for avoiding partial conducting paths is to ensure that one of the mentioned two pairs
of two adjacent conducting edges is never constructed. Thus, if a configuration results
in a merging node, we check if the two edges connecting to the merging node could
be conducting simultaneously. If so, we avoid this configuration. With this method, we
can prevent two lower edges of a diamond from conducting simultaneously. Figure 7(c)
and Figure 7(d) show the correct mapping results for the product terms in Figure 7(a)
and Figure 7(b), respectively.

Note that because the root node has only two edges (left and right), in order to
successfully map all the product terms, three kinds of bit values, 0, 1, and –, can-
not simultaneously appear as the first bits of different product terms. If they appear
simultaneously, we divide each product term having – in the first bit into two product
terms before mapping: one begins with 0 and the other begins with 1. Furthermore,
if there are two different kinds of bit values appearing in the first bits of all the prod-
uct terms, we will initially configure n(0,0).left and n(0,0).right based on the first bit
values to ensure n(0,0).left != n(0,0).right for successfully mapping all the product terms.
Thus, in the above example in Figure 6, actually we will configure n00.left as low and
n00.right as high before mapping the product terms.

Algorithm 1 is the proposed algorithm for product term mapping. In the algorithm,
we first configure n(0,0).left and n(0,0).right based on the first bit values of all the
product terms to ensure n(0,0).left != n(0,0).right, when there are two different first bit
values. Next, we start to configure all the product terms from the root node n(0,0). For
each product term t, we use a depth-first search (DFS)-like method to construct a path
for it. LeftConfigure() (Algorithm 2) and RightConfigure() (Algorithm 3) configure
the left and right edges of a node, respectively. If we cannot successfully map t from
n(0,0), we expand the structure by using Expand() (Algorithm 4). Finally, we configure
all the edges that are not configured yet as open.
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ALGORITHM 2: LeftConfigure
Input: A product term t, x coordinate x, and y coordinate y.
Output: A Boolean value.
if n(x,y).left is incompatible to the yth bit in t then

return 0;
end
if n(x–1,y+1) is a merging node and there is more than one path from n(x–1,y+1) then

return 0;
end
if the configuration of n(x,y).left will make the left edge of n(x,y) and the right edge of n(x–2,y) could
be conducting simultaneously then

return 0;
end
if n(x,y).left is empty then

configure it based on the mapping rules;
end
if x – 1 < 0 then

if RightConfigure(t, x – 1, y + 1) then
return 1;

end
if LeftConfigure(t, x – 1, y + 1) then

return 1;
end

end
if x – 1 ≥ 0 then

if LeftConfigure(t, x – 1, y + 1) then
return 1;

end
if RightConfigure(t, x – 1, y + 1) then

return 1;
end

end
Undo n(x,y).left if necessary, and return 0;

In LeftConfigure(), we first check if the left edge of a node n(x,y) is incompatible
to the yth bit in t. They are incompatible when n(x,y).left is configured and they do not
satisfy the mapping rules: high for 1, low for 0, and short for –. If so, we return to
the last procedure to consider the other edges or nodes. If they are compatible, we
then check whether the situation that two paths merge and then branch occurs. Here,
n(x–1,y+1) is the sink node of the left edge of n(x,y). If n(x–1,y+1) is a merging node and
there is more than one path from it, the configuration of n(x,y).left will make two paths
merge and branch. If not, we further check if the configuration of n(x,y).left will make
the left edge of n(x,y) and the right edge of n(x–2,y) could be conducting simultaneously.
If not, we then configure n(x,y).left based on the mapping rules when n(x,y).left is empty.
Next, we perform LeftConfigure() or RightConfigure() on n(x–1,y+1) for the next bit
based on the value of x. However, if we finally fail to map t due to the configuration of
n(x,y).left, we undo it and then consider the other edges or nodes. RightConfigure() is
similar to LeftConfigure(), but considers the configuration of a right edge.

In Expand(), we first determine the expansion direction. For example, suppose
n(x,y).left is high. If the first bit of t is 1, the expansion direction is left; otherwise, it
is right. The direction also determines the initial value of x. x is –2 when the direction
is left; otherwise, it is 2. Next, we start to construct a path using the same method for
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ALGORITHM 3: RightConfigure
Input: A product term t, x coordinate x, and y coordinate y.
Output: A Boolean value.
if n(x,y).right is incompatible to the yth bit in t then

return 0;
end
if n(x+1,y+1) is a merging node and there is more than one path from n(x+1,y+1) then

return 0;
end
if the configuration of n(x,y).right will make the right edge of n(x,y) and the left edge of n(x+2,y)
could be conducting simultaneously then

return 0;
end
if n(x,y).right is empty then

configure it based on the mapping rules;
end
if x – 1 < 0 then

if RightConfigure(t, x + 1, y + 1) then
return 1;

end
if LeftConfigure(t, x + 1, y + 1) then

return 1;
end

end
if x – 1 ≥ 0 then

if LeftConfigure(t, x + 1, y + 1) then
return 1;

end
if RightConfigure(t, x + 1, y + 1) then

return 1;
end

end
Undo n(x,y).right if necessary, and return 0;

the second bit to the last bit in t. First, we configure n(x,0).left and n(x,0).right as short.
Second, we determine the new root node for this configuration. It is n(x–1,1) if the
direction is left; otherwise, it is n(x+1,1). However, if we still fail to map t, we expand the
structure again and x is increased or decreased by 2 based on the expansion direction.

4. PRODUCT TERM SORTING
In this section, we present four different product term-sorting methods: LexSort,
InertiaSort, ForInertiaSort, and BackForInertiaSort. Our objective is to make the
configured paths of different product terms share as many edges as possible. The de-
tails of the proposed sorting methods are as follows:

4.0.1. LexSort. We sort the product terms by comparing the bit values from the first
bit with the relationship: – > 1 > 0. For example, Figure 8(b) shows the sorting result of
the product terms in Figure 8(a). Using LexSort, two product terms having continuous
bit value matches from the first bit will be adjacent. As a result, starting from the root
node, the adjacent product terms could possibly share the edges for the continuous
matching bits.

4.0.2. InertiaSort. Each product term has an inertia value that is the number of bit
value matches with all the other product terms. We sort the product terms from large
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ALGORITHM 4: Expand
Input: A product term t.
Output: A Boolean value.
Determine the expansion direction (left or right) based on the first bit in t.
if expansion direction is left then

x = –2;
else

x = 2;
end
while 1 do

Configure n(x,0).left and n(x,0).right as short if they are empty;
if x – 1 < 0 then

if RightConfigure(t, x – 1, 1) then
return 1;

end
if LeftConfigure(t, x – 1, 1) then

return 1;
end
x = x – 2;

end
if x – 1 ≥ 0 then

if LeftConfigure(t, x + 1, 1) then
return 1;

end
if RightConfigure(t, x + 1, 1) then

return 1;
end
x = x + 2;

end
end

Fig. 8. Four different sorting results. (a) Original. (b) LexSort. (c) InertiaSort. (d) ForInertiaSort. (e) Back-
ForInertiaSort.

to small by the inertia values. Figure 8(c) shows the sorting result. The inertia value
of the first product term in Figure 8(c) is 1 + 2 + 0 + 2 + 2 = 7. The inertia values of
the other product terms are 7, 6, and 4, respectively. Using InertiaSort, the product
terms that have more bit value matches with others will be mapped earlier than those
having fewer bit value matches. After a product term having a larger inertia value
is mapped, more product terms could possibly reuse its configured edges due to the
higher bit value matches.

4.0.3. ForInertiaSort. Unlike the inertia value, a product term’s forward inertia value
is the number of continuous bit value matches with all the other product terms from
the first bit. We sort product terms from large to small by the forward inertia values.
Figure 8(d) shows the sorting result. The forward inertia value of the first product
term in Figure 8(d) is 1 + 1 + 0 + 0 + 0 = 2. This is because only the second product
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Fig. 9. An example of variable reordering and product term sorting. (a) Original. (b) Variable reordered. (c)
Variable reordered and product term sorted.

term has two continuous bit value matches with it. The forward inertia values of the
other product terms are 2, 1, and 1, respectively. Using ForInertiaSort, the product
terms that have more continuous bit value matches with others from the first bit will
be mapped earlier. The reason behind this heuristic is that we expect many shared
edges to start from the root nodes and to be connected (continuous bits).

4.0.4. BackForInertiaSort. Conversely, a product term’s backward inertia value is the
number of continuous bit value matches with all the other product terms from the
last bit to the first bit. We first sort product terms from small to large by the backward
inertia values. Then, we sort them again from large to small by the forward inertia
values. This is why this sorting method is named BackForInertiaSort. The sorting
result is shown in Figure 8(e). Unlike the result in Figure 8(d), the third product
term has a smaller backward inertia value. BackForInertiaSort is used to complement
ForInertiaSort. We use the backward inertia values to distinguish the product terms
having the same forward inertia values, and expect they could share edges near the
leaf nodes.

5. VARIABLE REORDERING
In this section, we present a heuristic for reordering the variables in the computed
product terms. The objective is to reduce the area cost required for mapping the prod-
uct terms.

First, we use an example to demonstrate our motivation. In Figure 9, suppose we
use the number of hexagons to measure area cost. The set of product terms requires
8 hexagons for mapping as shown in Figure 9(a). However, if we reorder the variables
in the product terms as shown in Figure 9(b), we obtain a new mapping result having
less area cost, 7 hexagons, by using the same mapping approach. Thus, the variable
reordering could affect the mapping results.

Unfortunately, it is difficult to determine a variable order which results in the least
area cost. Thus, in this work, we use an empirical approach to develop a reorder-
ing heuristic. We separately applied the four product-sorting methods mentioned in
Section 4 to map a set of MCNC benchmarks [Yang 1991]. The experimental results
that will be presented in Section 8 show that using ForInertiaSort obtains the better
mapping results for more benchmarks. Thus, increasing the forward inertia value of
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each product term possibly enhances the mapping results. As a result, we develop a
greedy method to determine the variable order which aims to maximize the forward
inertia value of each product term.

Given n variables, v1 ∼ vn, we first prepare n positions for them. Starting from the
first position, we iteratively assign a variable to it until all the positions are occupied.
For example, we first select a variable for the first position. Next, we select a variable
from the remaining variables for the second position and so on. Finally, the new vari-
able order is obtained from the first position to the last position. The variable selection
rule is as follows: For the position under consideration at each iteration, we select the
variable which will result in the largest forward inertia value, when the variable is
assigned to the position. Because not all variables have been assigned to a position
during the reordering process, we only consider the variables having been assigned
when computing the forward inertia value at each iteration. We will use an example
to demonstrate the variable selection method in the following paragraphs.

Additionally, for the first position, we prevent from selecting a variable which simul-
taneously has three different kinds of bit values, 0, 1, and –, among all the product
terms, like v3 in the example in Figure 9(a). This is because the root node in a SET
array has only two edges (left and right). Thus, if we select such a variable at the first
position, we need to divide each product term having – in the first bit into two product
terms (one begins with 0 and the other begins with 1) for successfully mapping them.
As a result, this method increases the number of product terms and could result in
more area cost. Thus, a variable having three different bit values among all the prod-
uct terms has a lower priority to be selected at the first position, even it has a higher
forward inertia value.

We use the example in Figure 9(a) to demonstrate the reordering method. In this
example, there are four variables, v1 ∼ v4. First, let us consider the first position. In
the first variable column v1 = 00111, the first two bits 00 are identical and the last
three bits 111 are identical as well. Thus, for the first two bits, each bit is the same
with the other bit. Also, each bit in the last three bits is identical to the other two bits.
Thus, if v1 is selected at the first position, the forward inertia value is 1+1+2+2+2=8.
Based on the same method, if the second variable v2 = 10100 is selected at the first
position, the forward inertia value is 1 + 2 + 1 + 2 + 2=8. For v3 = 0 – –01, because it
simultaneously has 0, 1, and –, we prevent from selecting it at the first position. For
v4 = 0 – –0–, the forward inertia value is 1 + 2 + 2 + 1 + 2=8. Thus, based on the forward
inertia values, v1, v2, and v4 have the same priority to be selected at the first position.
Here, suppose we select v4 at the first position. The result is shown in Figure 9(b). In
the experiments, when there is more than one variable having the same priority to be
selected, we randomly choose one from them.

Next, let us consider the second position. Because v4 has been assigned at the first
position, we also need to consider its bit values, when we determine a variable for the
second position by computing the forward inertia value. First, for v1 = 00111, if it is
selected at the second position, the forward inertia value from v1 is 0 + 0 + 1 + 0 + 1=2
(only p2 and p4 have continuous bit value matches). Next, for v2 = 10100, the forward
inertia value is 0 + 1 + 0 + 0 + 1=2 (only p1 and p4 have continuous bit value matches),
when it is selected. Finally, when v3 = 0 – –01 is selected, the forward inertia value
is 1 + 1 + 1 + 1 + 0=4 (p0 and p1 have continuous bit value matches with p3 and p2,
respectively). As a result, we select v3 at the second position and continue to consider
the next position.

For the third position, the inertia values from v1 and v2 are both 0. Thus, we can
select either one of them. Here, suppose we select v1 and v2 for the third and last
positions, respectively. The variable reordering and the mapping results are shown in
Figure 9(b).
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Fig. 10. The overall mapping flow.

Furthermore, if we sort the product terms in Figure 9(b) by using ForInertiaSort and
then map them, we obtain a better mapping result as shown in Figure 9(c).

6. OVERALL MAPPING FLOW
Figure 10 shows the overall mapping flow. The input is a Boolean function (f ). In step 1,
we first construct an ROBDD (dd) of f by using the CUDD package. Then, we reorder
dd by using the heuristic CUDD REORDER SYMM SIFT in CUDD. In step 2, we first
compute all the product terms (PTs) of f by traversing dd. Next, we preprocess PTs to
prevent 0, 1, and – from appearing as the first bits simultaneously. At the end, we sort
PTs and then reorder the variables in PTs by using the proposed heuristics. In step 3,
we map PTs into a SET array by using the proposed mapping algorithm. Finally, we
get a configured SET array.

7. MAPPING CONSTRAINTS
In this section, we discuss two mapping constraints, granularity and fabric constraints,
which limit the status combinations of a pair of left and right edges of a node.

7.1. Configuration with Granularity Constraint
The configuration circuitry, which involves metal wires, is used to program the SET
into open, short, or active mode. As the metal wire pitches are larger than nanowire
pitches, the circuit density would be determined by the number of metal wires.
Limiting the number of metal wires can lead to higher circuit density at a loss of
flexibility. Thus, the granularity constraint, where the same configuration circuitry is
used to program multiple SETs simultaneously, was introduced by Eachempati et al.
[2008]. Consequently, the combination of n.left and n.right, (n.left, n.right), must be
one of (high, low), (low, high), (short, short), and (open, open), where n is a node in the
SET array.

According to the constraint, when one edge of the root node is configured as short,
the other edge must be short as well. Thus, before mapping, we divide each product
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Fig. 11. The mapping results with (a) granularity constraint, and (b) fabric constraint.

term whose first bit is – into two product terms: one has the first bit 0 and the other
has the first bit 1, unless the first bits of all the product terms are –.

Algorithm 1 maps product terms without any constraint. It can be easily extended to
consider the granularity constraint by modifying the configuration method. Originally,
two edges of a node are configured separately. To consider this granularity constraint;
however, we configure them at the same time. For example, when we configure one
edge of a node as high (low), we also configure the other edge as low (high). Similarly,
when one edge is short, the other edge is short as well.

Figure 11(a) shows the mapping result for the same set of product terms in
Figure 9(a) with the granularity constraint. Here, not all paths are connected to the
current source. This is because we configure two edges of a node for each bit at a time.
When we finish mapping the last bit of a product term, there are two paths constructed
simultaneously. Thus, we only connect the path with respect to the product term to the
current source.

Since two edges are configured simultaneously, we check if merging and branch-
ing paths occur for both of these two edge configurations to avoid creating invalid
paths. Additionally, we also prevent two lower edges of a diamond from conducting
simultaneously to avoid creating partial conducting paths. For brevity, we omit the
detailed mapping algorithm considering the granularity constraint.

7.2. Configuration with Fabric Constraint
In SET array implementation, the inputs to the active edges in a row are supplied by
metal wires. We need two wires to supply both the normal and complement of an input
to a row. Each edge is connected to either x or its complement x′ wires for the row. The
pattern of connections of x and x′ in a row defines the SET fabric and it is fixed during
manufacturing.

For example, using x to control all left edges and x′ to control all right edges results
in a symmetric fabric proposed in Eachempati et al. [2008]. In this mapping algo-
rithm, we also apply the symmetric fabric constraint. In the future, we will extend our
mapping algorithm to accommodate any fabric specification.

Under such a constraint, both (high, low) and (low, high) cannot simultaneously
appear at the same row in a SET array. Note that the entire row pattern of (high, low)
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((low, high)) can be changed to (low, high) ((high, low)) by swapping the normal value
and its complement in the control input signal for the row.

To satisfy this symmetric fabric constraint, we need to identify which combination
((high, low) or (low, high)) will appear at a certain row. One method is to follow the
first configuration obtained at the row. For example, if (high, low) is first configured at
a row, we then do not configure (low, high) at this row. Another easy method is to allow
only either (high, low) or (low, high) to appear in an entire SET array. For example, for
a bit value 1 or 0, we can always configure the left edge as high and the right edge as
low, that is, only (high, low) is allowed. For simplification, we use the second method
in the experiments of this work.

Figure 11(b) shows the mapping result for the same set of product terms in
Figure 6(a) considering the fabric constraint. In this example, only (high, low), (short,
short), and (open, open) are allowed. Since the fabric constraint is more restrictive than
the granularity constraint, more area is required for most benchmarks. Additionally, if
a mapping result satisfies the fabric constraint, it satisfies the granularity constraint
as well.

8. EXPERIMENTAL RESULTS
We implemented the algorithm in C language. The experiments were conducted
on a 3.0 GHz Linux platform (CentOS 4.8). The benchmarks are from the MCNC
benchmark suite [Yang 1991]. For each benchmark, we separately map the Boolean
function of each primary output (PO), and measure the total number of configured
hexagons and the total CPU time. The experiments consist of two parts: First, we com-
pare different product term sorting-heuristics and mapping constraints without re-
ordering the variables in the computed product terms. Next, we reorder the variables
before sorting the product terms to show the effectiveness of the proposed variable-
reordering heuristic.

Table I summarizes the experimental results of the first part. Column 1 lists the
benchmarks. Except the C17 benchmark, all the benchmarks have the crossing edge
issue in their ROBDDs. Directly mapping each of these ROBDDs into a SET array
could be very difficult. Columns 2 and 3 list the number of PIs and POs in each
benchmark, respectively. Column 4 lists the number of computed product terms. The
remaining columns list the mapping results in terms of the number of hexagons
by using different sorting heuristics and constraints. The number marked with “*”
means that it is the best result among all sorting heuristics. Columns 5 to 8 are
the constraint-free mapping results by using LexSort, InertiaSort, ForInertiaSort,
and BackForInertiaSort, respectively. Columns 9 and 10 are the mapping results of
applying the granularity and fabric constraints by using ForInertiaSort only. This is
because the ForInertiaSort heuristic has better results in considering all benchmarks
or large benchmarks in the experiments. We omit the results by using the other
sorting heuristics due to page limit.

For example, the C17 benchmark has 5 PIs and 2 POs. The total number of computed
product terms are 8. For constraint-free mapping, the mapping algorithm configured
16, 16, 18, and 18 hexagons to implement the benchmark function, when respectively
using LexSort, InertiaSort, ForInertiaSort, and BackForInertiaSort. For the granular-
ity and fabric constraints, the mapping algorithm with ForInertiaSort configured 61
and 68 hexagons, respectively.

Table I demonstrates that the proposed approach can automatically map the bench-
marks. The experimental results also show that there is no specific sorting heuris-
tic that completely outperforms the others for all the benchmarks. By all accounts,
ForInertiaSort results in the best mapping for considering all the benchmarks. Ad-
ditionally, when the constraints are considered, the number of configured hexagons
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Table I. The Experimental Results of Using Different Product Term-Sorting Heuristics and
Mapping Constraints

Bench. PI PO PT
Constraint-free Granu. Fabric

Lex Inert. FInert. BFInert. FInert. FInert.
C17 5 2 8 *16 *16 18 18 61 68

cm138a 6 8 48 177 152 *144 *144 464 528
x2 10 7 33 *149 152 153 154 725 790

cm85a 11 3 49 219 197 197 *195 608 528
cm151a 12 2 25 406 427 *400 *400 885 1045
cm162a 14 5 37 292 336 294 *287 1077 1163

cu 14 11 24 240 242 *238 *238 609 662
cmb 16 4 26 191 214 *188 *188 711 808

cm163a 16 5 27 275 *257 260 260 907 1029
pm1 16 13 41 337 342 *335 *335 1186 1239
pcle 19 9 45 *291 292 293 293 1553 1775
sct 19 15 142 1890 *1661 1725 1741 4665 5186
cc 21 20 57 618 658 *585 603 2214 2306
i1 25 16 38 632 650 *627 *627 1773 1920

lal 26 19 160 1968 2157 1832 *1799 7838 8684
pcler8 27 17 68 *737 850 *737 *737 3160 3435

frg1 28 3 399 *5993 5602 5612 5612 11029 13731
c8 28 18 94 *836 884 881 894 4663 4869

term1 34 10 1246 23494 25297 *22426 23856 70844 80293
count 35 16 184 1936 1861 *1336 1465 13509 14678
unreg 36 16 64 1288 *1259 1280 1280 4518 4632

b9 41 21 352 *6333 8650 6478 6542 24272 22089
cht 47 36 92 *2380 2390 *2380 *2380 7857 7934

apex7 49 37 1440 36252 44001 *35999 36317 123003 135543
example2 85 66 430 9737 10164 9623 *9494 53597 50471

Best 8 4 12 12
Total 96687 108711 94041 95859 341728 365406

increases. This is because the number of edges shared by different paths decreases.
As for the CPU time, the proposed method can map each benchmark within 1 second
except the term1 and apex7 benchmarks that spent approximately 6 seconds. The CPU
time includes the required time for computing product terms.

Furthermore, when we apply the proposed variable-reordering heuristic before sort-
ing the product terms, we can obtain better mapping results for most benchmarks.
The experimental results are shown in Table II and they correspond to that shown in
Table I.

Table II shows that, for constraint-free mapping with ForInertiaSort, we can save
a total of 14871 (94041–79170) hexagons by reordering the variables. Additionally,
although the proposed variable-reordering heuristic aims to maximize the forward
inertia value, other product term-sorting heuristics, LexSort, InertiaSort, and Back-
ForInertiaSort, also take advantage of the variable reordering. Even though consider-
ing the granularity and fabric constraints, the proposed variable-reordering heuristic
is effective as well. Although the reordering process requires some CPU time over-
head, among the benchmarks, the largest CPU time overhead is less than 4 minutes
required for the apex7 benchmark, which is reasonable.

In summary, both product term sorting and variable reordering are important for
mapping the product terms. Although the proposed mapping algorithm is not an op-
timal approach, the experimental results show that it is efficient and effective. More
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Table II. The Experimental Results of Using Different Product Term-Sorting Heuristics and
Mapping Constraints with Variable Reordering

Bench. PI PO PT
Constraint-free Granu. Fabric

Lex Inert. FInert. BFInert. FInert. FInert.
C17 5 2 8 *14 14 *12 *12 49 73

cm138a 6 8 48 142 156 *120 *120 400 501
x2 10 7 33 122 125 *107 *107 703 772

cm85a 11 3 49 227 *197 205 205 569 533
cm151a 12 2 25 172 192 *147 *147 467 589
cm162a 14 5 37 206 *199 214 214 923 1046

cu 14 11 24 170 167 *164 *164 595 566
cmb 16 4 26 *80 148 *80 *80 772 853

cm163a 16 5 27 150 142 *130 *130 747 774
pm1 16 13 41 *218 225 *218 *218 1164 1261
pcle 19 9 45 *247 275 *247 *247 1316 1402
sct 19 15 142 957 *841 889 885 4620 5165
cc 21 20 57 463 454 *452 *452 1947 2067
i1 25 16 38 432 429 *422 *422 1680 1753

lal 26 19 160 *1191 1287 1376 1376 7706 7233
pcler8 27 17 68 618 647 *617 *617 3157 3706

frg1 28 3 399 *4999 5055 *4999 5404 19534 19923
c8 28 18 94 708 695 *667 *667 4297 4715

term1 34 10 1246 *19368 19940 19395 20768 66979 60849
count 35 16 184 1906 1814 *1528 *1528 11337 13569
unreg 36 16 64 *593 *593 *593 *593 4394 4512

b9 41 21 352 *3859 4508 3969 4085 26059 26845
cht 47 36 92 1708 1709 *1708 *1708 8398 8456

apex7 49 37 1440 *38237 39271 *34601 36386 117762 126496
example2 85 66 430 6326 6410 6310 *6302 42900 38944

Best 9 4 18 17
Total 83113 85493 79170 82837 328475 332603

Total in Table I 96687 108711 94041 95859 341728 365406
Improvement 13574 23218 14871 13022 13253 32803

important, the automatic mapping approach solves the inefficiency problem that pre-
vious manual approach [Eachempati et al. 2008] suffered from.

9. CONCLUSION
In this article, we propose a product-term-based approach that can efficiently map a
Boolean function into a SET array. It solves the problem of automatically mapping
a BDD into a SET array that previous work suffered from. The proposed approach
simplifies the mapping problem by transforming a BDD into a set of product terms,
and then individually mapping these product terms. Additionally, four product term-
sorting and one variable-reordering heuristics are proposed to enrich the approach.
The granularity and fabric constraints are also handled by the proposed approach. The
experimental results show its effectiveness and efficiency of mapping a set of MCNC
benchmarks. Our automatic mapping is a key enabler for using the promising BDD-
based SET technology.
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