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Abstract: We demonstrate high frequency switching
characteristics of TFETs based on the
IngoGag As/GaAsy 3sSbyg, material system. These near
broken-gap TFETs (NBTFETs) with 200nm channel length
exhibit record drive current (Ioy) of 740puA/pm, intrinsic RF
transconductance (Gy) of 700uS/um, and a cut-off
frequency (Fr) of 19GHz at Vpg=0.5V.  Numerical
simulations calibrated to the experimental data are used to
provide insight into the impact of vertical architecture on
switching performance of TFETSs at scaled technology nodes.

Introduction: TFETs can achieve sub-60mV/decade
switching slope (SS) at room temperature thereby enabling
supply voltage scaling without penalty on the off state
leakage. High band to band tunneling (BTBT) current
density can be achieved by band-gap engineering [1-2] and
implementing near broken gap tunnel barrier in
Ing9Gay ;As/GaAs,3Sbyg, material system (Fig. 1(a)).
Implementing NBTFETs in a vertical architecture provides
added advantage in terms of increased device density [3]. In
this work, we demonstrate high frequency switching
characteristics of NBTFET, for the first time. Through
detailed RF characterization coupled with numerical
simulations, an optimal vertical NBTFET structure is
designed for DC and RF performance with low DC power
consumption.

Materials Characterization: Fig. 1(b) shows the schematic
of the NBTFET layer structure grown by molecular beam
epitaxy (MBE). Effective tunnel barrier height (Eb.y) of
0.04eV is expected in NBTFET (Fig. 1(c)). Internal
photoemission (IPE) spectroscopy is performed to measure
the band-alignment of NBTFETs by using graphene as a
transparent electrode (Figs. 2(a)-(d)). The barrier height for
holes (®y,) from the Ing ¢Gag;As conduction band (CB) to the
Al,O; valence band (VB) is found to be 3.05¢V from the
field independent yield plot (Fig. 2(b)). @, for the
GaAs 15Sbg g2 CB to the Al,O; VB is measured to be 3.72eV
(Fig. 2(c)). Within the limits of measurement accuracy, the
effective tunneling barrier (Eb.y) of the NBTFET is
determined to be 0.02eV with the band-gap of GaAsg 13Sby g,
of assumed to be 0.69¢V [4].

Device Fabrication: Fig. 3(a) shows the schematic of the
vertical NBTFET fabricated by using the process flow
described in Fig. 3(b). Implementation of inter-layer
dielectric (ILD) and via process technology to contact the
sidewall gate and bottom source electrodes reduces the
parasitic capacitances, enabling evaluation of the switching
characteristics of the vertical NBTFET. The high resolution
TEM cross-section image of the fabricated NBTFET shows a
sidewall tapering angle of 53°, gate-drain overlap of 120nm
and gate-source overlap of 40 nm (Fig. 3(c)).

DC Characterization: Fig. 4(a) shows the temperature
dependent transfer (Ips-Vgs) characteristics of the NBTFET.
The weak observed dependence of Ioy on temperature is
consistent with the band to band tunneling dominated
conduction mechanism (Figs. 4(a)-(b)). The NBTFET
exhibits [opn=740pA/pm at Vgs=2.5V, Vps=0.5 V. Saturation
is observed in the output characteristics at lower Vggrange;
however, for higher Vgs, series resistance affects the
saturation characteristics. At T=300K, Vpg=0.5V the
NBTFET exhibits peak extrinsic DC Gy, of 680uS/pm (Fig.
4(c)). Activation energy of 0.21eV is obtained from the
Arrhenius plot in Fig. 4(d), which is close to half of the
band-gap (E,) of IngyGa;As indicating a SRH dominated
leakage floor (Iopr). InAs homo-junction p-i-n diodes
fabricated for comparison showed significantly lower Iogr
(Fig. 4(d)). Hence, the Iopr in NBTFET at T=300 K is
attributed to SRH generation-recombination current arising
from a high density of defect states.

Pulsed-IV Characterization: Numerical simulation is
calibrated with the measured Ips-Vgs characteristics at
T=300 K, Vps=0.5 V by introducing interface states density
(Dy) of 5x10'> cm™?eV™". The electron quasi Fermi level in the
channel is obtained from numerical simulation and is found
to move from deep inside the CB in the on-state to near
mid-gap (MQG) as Vg is reduced until bulk leakage currents
dominate the electrical characteristics (Fig. 5(a)). 100ns gate
pulsing suppresses Dj, response in the energy range from MG
to 0.1eV farther from MG, whereas 1lps gate pulsing
suppresses Dj, response in the energy range only 0.035 eV
farther from MG (Fig. 5(b)). Fig. 5(c) shows the Ips-Vgs
characteristics at Vpg=0.5 V for varying gate voltage pulse
widths. Fig. 5(d) shows the corresponding SS as a function
of drain current. SS is found to improve with faster gate
voltage pulsing and further improves with reduction in Iogg
(T=77 K) and EOT scaling.

RF Characterization: A coplanar ground-signal-ground
(GSG) waveguide structure is used to inject RF signal into
the NBTFET (Fig. 6(a)). Fig. 6(b) shows the measured and
modeled scattering parameters of NBTFET from 40MHz to
20GHz which are in excellent agreement with each other.
Fig. 6(c) shows the measured and modeled small signal
current gain, hy; as a function of frequency. The 200nm L,
NBTFET exhibits F; of 10GHz and 19GHz at Vpg=0.3V and
0.5V (RF  Gy=700pS/um) respectively. Numerical
simulation of the NBTFET structure matched to the HRTEM
image is carried out taking into account the various parasitic
capacitances and resistances (Figs. 7(a-b)) [3]. Simulated
Cosextrinsic aNd Cgg exirinsic Values are in agreement with the
measured values from the RF measurements (Figs. 8(a-d)).
Cgov and Cgq,y are the dominant parasitic capacitances
which when de-embedded result in F; of 22GHz and 39GHz



at 0.3V and 0.5V Vpg respectively (Figs. 9(a)-(b)). Further,
gate-drain overlap results in increased gate capacitance
(Cogextrinsic) as  well as  reduced series resistance
corresponding to improved Gy. NBTFETs with a gate-drain
underlap of 40 nm deliver maximum Fr (Figs. 10(a-b)). Figs.
10(c-e) show the impact of the sidewall tapering angle on the
switching performance of TFETS. Increased gate capacitance
due to tapering is countered by improved Gy arising from
the longer spread of BTBT generated carriers. An optimum
tapering angle of 80° maximizes Fr. Vertical NBTFET with
scaled dimensions (Table I) are found to outperform both the
DC and RF performance of 32nm CMOS (Figs. 11 (a-c)).

Conclusion: 200 nm L., NBTFETSs have been demonstrated
with record high Ion=740pA/pm, RF Gy=700pS/pm and
Fr=19 GHz. Vertical NBTFETs with scaled device
dimensions, optimized gate-source overlap, gate-drain
underlap, and sidewall tapering angle outperform CMOS in
terms of both DC and RF characteristics with lower DC
biasing power.
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Fig. 1 (a) Band to band tunneling

current density in tunnel diode as a
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Fig. 2 (a) Internal photo emission spectroscopy experiment setup using
graphene as a transparent electrode. (b) Barrier height for hole emission
from InoyGag As is measured to be 3.05eV. (c) Barrier height for hole
emission from GaAs15Sbys; is measured to be 3.72eV. (d) The as-grown
NBTFET has an effective barrier height of 0.02eV.
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Fig. 3 (a) Schematic of the
fabricated vertical NBTFET. (b)
Fabrication process flow developed
to reduce the parasitics and enable
RF measurements. (¢) Cross-section
HRTEM image of the fabricated
NBTFET showing angled sidewall,
gate-drain overlap and source
over-etch with respect to
hetero-junction resulting in
gate-source overlap.
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Fig. 4 (a) Temperature dependent transfer characteristics of NBTFET showing improved Ion/Iorr at low temperature. (b) Output characteristics of
NBTFET at T=300K and T=77K. (¢) NBTFET exhibits peak extrinsic Gy of 680uS/pm at T=300 K, V;s=0.5V. (d) Activation energy of E,/2 confirms
SRH generation-recombination in Ing9Gay;As as the mechanism setting Iorr. InAs homojunction p-i-n leakage floor at T=300K is much lower in
comparison.
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Fig. 5 (a) Numerical simulation calibrated to measured Ips-Vs characteristics at T=300K is used to map the electron quasi-Fermi level movement in the
channel (b) Simulated electron trap response time in Ing9Ga, As is used to estimate the gate voltage pulse width required to suppress D response. (c)
Transfer characteristics at T=300K, Vps=0.5V for varying gate pulse widths. (d) SS as a function of drain current at Vs=0.5V showing improvement with
pulsing, reduction in leakage floor and EOT scaling.

Fig. 6 (a) SEM image of the fabricated NBTFET under GSG configuration. (b-c) Modeled and measured s-parameters at Vpg=0.3V and 0.5V
respectively. (d) Measured and modeled H,, parameter at Vps=0.5V and 0.3V. After de-embedding, Fr of 10GHz and 19GHz are measured at Vps=0.3V
and 0.5V respectively. RF Gy=700pS/pm is measured at Vps=0.5V.
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Fig. 11 (a) Schematic of the scaled NBTET, the device parameters are shown in
table 1. (b) Ion Vs Ion/Iorr plot of the NBTFET for different L., compared to 32nm
CMOS. (c) Comparison of the projected extrinsic Fr of NBTFET compared to
32nm CMOS.



