Enhancement Mode Strained (1.3%) Germanium Quantum Well FinFET (W_{fin}=20nm) with High Mobility (μ_{Hole}=700 cm²/Vs), Low EOT (~0.7nm) on Bulk Silicon Substrate

<u>A. Agrawal</u>¹, M. Barth¹, G. B. Rayner Jr.², V. T. Arun¹, C. Eichfeld¹, G. Lavallee¹, S-Y. Yu¹, X. Sang³, S. Brookes³, N. Agrawal¹, Y. Zheng¹, Y-J. Lee⁴, Y-R. Lin⁴, C-H. Wu⁴, C-H. Ko⁴, J. LeBeau³, R. Engel-Herbert¹, S. E. Mohney¹, Y-C. Yeo⁴ and S. Datta¹

¹The Pennsylvania State University ²Kurt J. Lesker Company ³North Carolina State University ⁴Taiwan Semiconductor Manufacturing Company

Outline

- High Mobility Strained Germanium (s-Ge) QW
- Novel Tri-layer Dielectric Integration on Ge
- s-Ge QW on silicon Buffer Design and Growth
- s-Ge QW FinFET Fabrication and Characterization
- Benchmarking

compared to r-Ge MOSFET

Low EOT of 0.83nm obtained on Ge QW

Removal of native GeO_x with low power H-Plasma etch
 High quality, uniform GeO_x IL formed using low power O-Plasma pulse

Ultrathin Al₂O₃ cap layer and HfO₂ high-κ deposited using Thermal ALD

Tri-Layer High-к: In-situ GeO_x Passivation

 In-situ plasma clean and GeO_x IL realized for enhanced surface passivation
 Low power plasma reduces surface roughness

in SiGe buffer with no degradation in I_{ON}

>2X higher I_{ON} (V_{DS}=-0.5V) with 96 mV/dec subthreshold slope obtained with Tri-layer high-k

>4X higher hole mobility compared to r-Ge achieved

[1] R. Pillarisetty et al., IEDM 2010 [2] J. Mitard et al., VLSI 2009 [3] O. Weber et al., IEDM 2005

Highest hole mobility at lowest EOT achieved with GeO_x IL

[1] R. Pillarisetty et al., IEDM 2010 [2] J. Mitard et al., VLSI 2009 [3] O. Weber et al., IEDM 2005

Outline

Integrate s-Ge QW and Tri-layer high-к in a FinFET

Strain relaxation near sidewall results in net uniaxial strain along the channel direction

* M. Chu et al., Annu. Rev. Mater. Res. 2009

Mobility enhancement due to increasing uniaxial compressive strain with reducing W_{fin} 20

FinFET Fabrication : SEM

ightarrow W_{fin}=20nm; Fin pitch = 80nm; Tri-layer high-κ realized on s-Ge QW with SIT process

FinFET Fabrication : TEM

Vertical fin sidewall profile achieved for W_{fin}=20nm QW FinFET

E-Mode (V_T=-0.75V); I_{ON}/I_{OFF}~10⁴; SS=150mV/dec for W_{fin}=20nm FinFET with Tri-layer high-κ obta<u>i</u>ned

noie Density [/ciii-]

Reducing sidewall D_{IT} and sidewall roughness key to achieving higher fin mobility
²⁷

indicates sidewall roughness scattering

Reduced temperature dependence of mobility for FinFET is indicative of sidewall roughness²⁹

Short Channel Ge QW FinFET

Short channel FinFET with gate length of 100nm and Tri-layer high-κ fabricated using SIT

Short Channel FinFET Performance

performance

[1] C. Auth et al., VLSI 2012

Conclusion

Asymmetric uniaxial strain along fin (1.8%) results in high hole mobility in s-Ge QW FinFET

In-situ H-plasma clean and Tri-layer High-k gate stack developed: Low leakage (10⁻² A/cm²), low D_{IT} at ultrathin EOT (0.72nm) obtained

Mobility of 770 cm²/Vs at 0.83nm EOT achieved with s-Ge QW MOSFETs

E-Mode 1.3% s-Ge QW FinFET with W_{fin}=20nm and µ_{Hole}=700 cm²/Vs (2.6X over r-Ge) achieved with Trilayer high-k

s-Ge QW FinFET shows 8x10⁶ cm/s v_{inj} (simulation) with lower R_{access}

Acknowledgements

- TSMC
 - Exploratory Technology Development
- Kurt J. Lesker Co.
- Penn State Nanofab
- National Science Foundation

THANK YOU