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Abstract

Compressively strained Ge (s-Ge) quantum well (QW)
FinFETs with Sij ;Ge, ;7 buffer are fabricated on 300mm bulk Si
substrate with 20nm Wy, and 80nm fin pitch using sidewall
image transfer (SIT) patterning process. We demonstrate (a) in-
situ process flow for a tri-layer high-k dielectric
HfO,/Al,0;/GeO gate stack achieving ultrathin EOT of 0.7nm
with low Dir and low gate leakage; (b) 1.3% s-Ge FinFETs
with Phosphorus doped Siy;Geq; buffer on bulk Si substrate
exhibiting peak p,=700 cm*/Vs, =220 cm*/Vs at 10" /cm®
hole density. The s-Ge FinFETs achieve the highest u*C,, of
3.1x10™ F/Vs resulting in 5x higher Ioy over unstrained Ge
FinFETs.

Introduction

Ge pMOSFETs on bulk silicon substrate are a promising
solution for improving the p-channel FET performance [1]. It
is imperative to optimize the relaxed SiGe buffer counter
doping with Phosphorus to achieve reliable isolation,
maximize the uniaxial compressive strain in extremely scaled
s-Ge fin to enhance p;,, incorporate a gate stack with low EOT
and Djr, and mitigate the sidewall roughness to prevent py
reduction. In this work, we investigate the optimum depth of
location of the buffer Phos doping, tri-layer optimization of an
ultrathin EOT gate stack without Si interlayer (IL) (Fig. 1),
residual uniaxial strain retention in scaled fins of a s-Ge QW
heterostructure (Fig. 2), and temperature dependent p
characterization in s-Ge fins to quantify the effective mobility
degradation. We experimentally evaluate enhancement mode,
scaled s-Ge QW FinFETs with Wg;;=20nm and 80nm fin pitch
to demonstrate record p*C,,.« product of 3.1x10™* F/Vs which
is 2X higher than best reported till date.

Tri-layer Gate Stack

The tri-layer gate stack design and fabrication is shown in Fig.
3. GeOx is used to ensure low Djr at high-k/Ge interface,
Al O3 cap layer mitigates HfO,-GeOx intermixing while HfO,
alleviates gate leakage. The oxide layer thicknesses have been
systematically  optimized wusing in-situ  spectroscopic
ellipsometry (Fig. 4) to enable ultimate EOT scaling whilst
preserving functionality of each layer as confirmed using TEM
and EDX (Fig. 5). Direct correlation of the Al,O; and HfO,
thicknesses was established with the MOS capacitor C-V
characteristics (Fig. 6). Excellent C-V response with ultrathin
EOT of 0.72nm exhibiting the lowest gate leakage (Fig. 7, 8)
was obtained with 17A HfO,/5A AlL,Os/6A GeO,/p-Ge gate
stack. The Dir analysis of these gate stacks (Fig. 9, 10)
exhibited 4X better interface quality with thicker AlO;
indicating more stable GeOx. Further, bulk trap density was
reduced with ALO; thickness preventing HfO,-GeOx
intermixing (Fig. 11).

s-Ge FinFETSs

Fig. 12 shows the schematic of s-Ge QW heterostructure on
300mm bulk Si substrate along with the fabrication process for
scaled FinFETs with scaled and tight fin pitch using SIT
process. Optimization of chlorine-based dry etch resulted in
vertical fin sidewall profile with W;,=20nm and fin pitch of
80nm as seen under high resolution cross section TEM (Fig.
13)

Phos Doped Buffer Design

s-Ge QW MOSFETs with Phos doping placed at 150nm and
250nm depth in the Siy3Gey,; buffer were characterized to
identify the optimum depth of buffer counter doping. Four



orders ot magnitude lower lopr Was obtained tor 2Z>Unm deep
Phos doping compared to no Phos in buffer, with no
degradation in Ioy (Fig. 14). This indicated effective counter
doping of acceptor defects in relaxed Siy3Gep; buffer that
otherwise result in parallel conduction and affect device
isolation.

Si cap vs. GeO, passivation

The incorporation of an ultrathin Si interlayer to passivate
high-x/Ge interface results in high EOT and is further
incompatible with 3D FinFET manufacturing process flow.
Hence, the tri-layer gate stack with GeOy passivation after Si
cap removal was deposited on s-Ge QW MOSFET and
FinFET (Fig. 15). 2X higher Ioy was obtained with tri-layer
gate stack at Vpg=-0.5V, Lg=5um compared to with Si cap on
s-Ge QW MOSFET. This can be attributed to 2.3X higher
capacitance as measured using split-CV along with excellent
modulation from accumulation to depletion. Hence, Si cap
removal and tri-layer dielectric with GeOx passivation was
key in realizing low EOT with low Dy on s-Ge QW.

E-Mode s-Ge QW FinFET

Excellent transfer characteristics with ION/IOFF:2x104 were
observed on s-Ge QW FinFETs with Wg;,=70nm, 45nm and
20nm fabricated with SIT process after Si cap removal and
deposition of tri-layer gate stack (Fig. 16(a)) showing
advantage of Phos doping in buffer in addition to ultrathin
EOT gate stack on high mobility s-Ge channel. The combined
effect of confinement due to quantization from QW and fin
patterning resulted in enhancement mode operation for
Wgp=45nm and 20nm s-Ge QW FinFETs (Fig. 16(b)).
Experimental effective hole mobility (pe) for s-Ge QW
MOSFETs and FinFETs extracted from split-CV s
summarized in Fig. 17. Highest peak p.s of 700 cm?/Vs
obtained for s-Ge FinFET with Wpg,=20nm shows 2.6X
improvement compared to unstrained Ge [2] which is
attributed to the residual asymmetric uniaxial strain in the fin
as a result of patterning. In addition, 2X degradation in pg at
NSIIO13 Jem? from planar to Wg,=20nm indicated increased
scattering in FinFET compared to planar which was
investigated using temperature dependent measurements.

Sidewall Scattering

Temperature dependent transfer characteristics for s-Ge QW
FinFET with Wg;,,=20nm showed higher modulation with
temperature in the subthreshold region compared to s-Ge QW
MOSFET for the same gate stack (Fig. 17, 18). Low
subthreshold slope of 96 mV/dec for planar MOSFET
indicates low Dy at the high-k/Ge top surface. In contrast, a
degraded subthreshold slope of 150 mV/dec for s-Ge FinFET

1S 1ndicative ot higher Djp response trom the high-k/Ge
interface at the sidewall due to higher density of dangling
bonds as a result of fin etch. Temperature dependent hole
mobility as a function of hole density for planar MOSFET
(Fig. 19) revealed Ns™' dependence at 300K and 77K, which is
characteristic of phonon scattering limited mobility. For s-Ge
QW FinFETs, a much stronger Ns? dependence and
temperature independent mobility with varying fin width (Fig.
20) revealed sidewall roughness as the dominant scattering
mechanism. Optimization of fin etch to reduce the sidewall
roughness is key to achieving even higher hole mobility in s-
Ge QW FinFET.

Benchmarking and Conclusions

In conclusion, optimized tri-layer high-k gate stack exhibiting
ultrathin EOT=0.72nm and low gate leakage on Ge was
developed. Uniaxially s-Ge QW FinFETs with Wg;,,=20nm
was demonstrated with high ppe, =700 cm?/Vs and 220 cm?/V's
at 10" /em® with ultrathin EOT (Fig. 21). The high mobility s-
Ge channel FinFET in conjunction with scaled gate stack
resulted in the highest p*Cx product of 3.1x10™ F/Vs (Table
I) among high performance Ge FinFETs. The aforementioned
enhancements in transport and gate stack resulted in 5X higher
Ion (Fig. 23) for s-Ge QW FinFET indicating promise for
future alternate channel p-FinFET device technology.
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Fig. 1: (a) Schematic showing device parameters critically
optimized and enhanced for high performance p-channel
1.3% compressively strained Ge QW FinFET grown on
Siy 3Geg 7 buffer on 300mm bulk Si substrate.
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Fig. 2: Simulated transverse strain (g,) profile for Wg;;=20nm Ge QW FinFET;

e is in % strain, (b) Simulated transverse and longitudinal strain in channel

as a function of fin width, (c) simulated hole effective mobility as function of
uniaxial stress in channel for (100) and (110) orientated Ge and Si substrate.
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HfO, thickness.
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Table I: Benchmarking of key
device parameters demonstrated
in this work with other high
performance s-Ge FinFETs till
date.
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