Enhancement Mode Strained (1.3%) Germanium Quantum Well FinFET (W_{Fin}=20nm) with High Mobility (\mu_{Hole}=700 \, \text{cm}^2/\text{Vs}), Low EOT (~0.7nm) on Bulk Silicon Substrate

A. Agrawal1, M. Barth1, G. B. Rayner Jr.2, Arun V. T.1, C. Eichfeld1, G. Lavallee1, S-Y. Yu1, X. Sang3, S. Brookes3, Y. Zheng1, Y-J. Lee4, Y-R. Lin4, C-H. Wu4, C-H. Ko4, J. LeBeau3, R. Engel-Herbert1, S. E. Mohney1, Y-C. Yeo4 and S. Datta1

1The Pennsylvania State University, University Park, PA, USA; 2Kurt J. Lesker Company, Pittsburgh, PA, USA; 3North Carolina State University, Raleigh, NC, USA 4Taiwan Semiconductor Manufacturing Company, Hsinchu, Taiwan

Email: ashish@psu.edu

Abstract

Compressively strained Ge (s-Ge) quantum well (QW) FinFETs with Si_{0.7}Ge_{0.3} buffer are fabricated on 300mm bulk Si substrate with 20nm W_{Fin} and 80nm fin pitch using sidewall image transfer (SIT) patterning process. We demonstrate (a) in-situ process flow for a tri-layer high-\kappa dielectric HfO\textsubscript{2}/Al\textsubscript{2}O\textsubscript{3}/GeO\textsubscript{x} gate stack achieving ultrathin EOT of 0.7nm with low D_{IT} and low gate leakage; (b) 1.3\% s-Ge FinFETs with Phosphorus doped Si_{0.7}Ge_{0.3} buffer on bulk Si substrate exhibiting peak \mu_b=700 \, \text{cm}^2/\text{Vs}, \mu_h=220 \, \text{cm}^2/\text{Vs} at 10^{13} /\text{cm}^2 hole density. The s-Ge FinFETs achieve the highest \mu^\ast C_{max} of 3.1\times10^{-4} \, \text{F/Vs} resulting in 5x higher I_{ON} over unstrained Ge FinFETs.

Introduction

Ge pMOSFETs on bulk silicon substrate are a promising solution for improving the p-channel FET performance [1]. It is imperative to optimize the relaxed SiGe buffer counter doping with Phosphorus to achieve reliable isolation, maximize the uniaxial compressive strain in extremely scaled s-Ge fin to enhance \mu_h, incorporate a gate stack with low EOT and D_{IT}, and mitigate the sidewall roughness to prevent \mu_b reduction. In this work, we investigate the optimum depth of location of the buffer Phos doping, tri-layer optimization of an ultrathin EOT gate stack without Si interlayer (IL) (Fig. 1), residual uniaxial strain retention in scaled fins of a s-Ge QW heterostructure (Fig. 2), and temperature dependent \mu_b characterization in s-Ge fins to quantify the effective mobility degradation. We experimentally evaluate enhancement mode, scaled s-Ge QW FinFETs with W_{Fin}=20nm and 80nm fin pitch to demonstrate record \mu^\ast C_{max} product of 3.1\times10^{-4} \, \text{F/Vs} which is 2X higher than best reported till date.

Tri-layer Gate Stack

The tri-layer gate stack design and fabrication is shown in Fig. 3. GeO\textsubscript{x} is used to ensure low D_{IT} at high-\kappa/Ge interface, Al\textsubscript{2}O\textsubscript{3} cap layer mitigates HfO\textsubscript{2}-GeO\textsubscript{x} intermixing while HfO\textsubscript{2} alleviates gate leakage. The oxide layer thicknesses have been systematically optimized using in-situ spectroscopic ellipsometry (Fig. 4) to enable ultimate EOT scaling whilst preserving functionality of each layer as confirmed using TEM and EDX (Fig. 5). Direct correlation of the Al\textsubscript{2}O\textsubscript{3} and HfO\textsubscript{2} thicknesses was established with the MOS capacitor C-V characteristics (Fig. 6). Excellent C-V response with ultrathin EOT of 0.72nm exhibiting the lowest gate leakage (Fig. 7, 8) was obtained with 17A HfO\textsubscript{2}/5A Al\textsubscript{2}O\textsubscript{3}/6A GeO\textsubscript{x}/p-Ge gate stack. The D_{IT} analysis of these gate stacks (Fig. 9, 10) exhibited 4X better interface quality with thicker Al\textsubscript{2}O\textsubscript{3}, indicating more stable GeO\textsubscript{x}. Further, bulk trap density was reduced with Al\textsubscript{2}O\textsubscript{3} thickness preventing HfO\textsubscript{2}-GeO\textsubscript{x} intermixing (Fig. 11).

s-Ge FinFETs

Fig. 12 shows the schematic of s-Ge QW heterostructure on 300nm bulk Si substrate along with the fabrication process for scaled FinFETs with scaled and tight fin pitch using SIT process. Optimization of chlorine-based dry etch resulted in vertical fin sidewall profile with W_{Fin}=20nm and fin pitch of 80nm as seen under high resolution cross section TEM (Fig. 13)

Phos Doped Buffer Design

s-Ge QW MOSFETs with Phos doping placed at 150nm and 250nm depth in the Si_{0.7}Ge_{0.3} buffer were characterized to identify the optimum depth of buffer counter doping. Four
orders of magnitude lower I_{OFF} was obtained for ≥ 20nm deep Phos doping compared to no Phos in buffer, with no degradation in I_{ON} (Fig. 14). This indicated effective counter doping of acceptor defects in relaxed Si$_{0.5}$Ge$_{0.5}$ buffer that otherwise result in parallel conduction and affect device isolation.

Si cap vs. GeO$_x$ passivation

The incorporation of an ultrathin Si interlayer to passivate high-κ/Ge interface results in high EOT and is further incompatible with 3D FinFET manufacturing process flow. Hence, the tri-layer gate stack with GeO$_x$ incompatible with 3D FinFET manufacturing process flow.

investigated using temperature dependent measurements.

scattering in FinFET compared to planar which was key in realizing low EOT with low D$_{IT}$ removal and tri-layer dielectric with GeO$_x$ passivation was

modulation from accumulation to depletion. Hence, Si cap capacitance as measured using split-CV along with excellent S-Ge QW MOSFET. This can be attributed to 2.3X higher IT on s-Ge QW.

E-Mode s-Ge QW FinFET

Excellent transfer characteristics with $I_{ON}/I_{OFF}=2\times10^4$ were observed on s-Ge QW FinFETs with $W_{Fin}=70$nm, 45nm and 20nm fabricated with SIT process after Si cap removal and deposition of tri-layer gate stack (Fig. 16(a)) showing advantage of Phos doping in buffer in addition to ultrathin EOT gate stack on high mobility s-Ge channel. The combined effect of confinement due to quantization from QW and fin patterning resulted in enhancement mode operation for $W_{Fin}=45$nm and 20nm s-Ge QW FinFETs (Fig. 16(b)). Experimental effective hole mobility (μ_{eff}) for s-Ge QW MOSFETs and FinFETs extracted from split-CV is summarized in Fig. 17. Highest peak μ_{eff} of 700 cm2/Vs obtained for s-Ge FinFET with $W_{Fin}=20$nm shows 2.6X improvement compared to unstrained Ge [2] which is attributed to the residual asymmetric uniaxial Ge strain in the fin as a result of patterning. In addition, 2X degradation in μ_{eff} at $N_s=10^{13}$/cm2 from planar to $W_{fin}=20$nm indicated increased scattering in FinFET compared to planar which was investigated using temperature dependent measurements.

Sidewall Scattering

Temperature dependent transfer characteristics for s-Ge QW FinFET with $W_{Fin}=20$nm showed higher modulation with temperature in the subthreshold region compared to s-Ge QW MOSFET for the same gate stack (Fig. 17, 18). Low subthreshold slope of 96 mV/dec for planar MOSFET indicates low D_{IT} at the high-κ/Ge top surface. In contrast, a degraded subthreshold slope of 150 mV/dec for s-Ge FinFET is indicative of higher D_{IT} response from the high-κ/Ge interface at the sidewall due to higher density of dangling bonds as a result of fin etch. Temperature dependent hole mobility as a function of hole density for planar MOSFET (Fig. 19) revealed N_s^{-1} dependence at 300K and 77K, which is characteristic of phonon scattering limited mobility. For s-Ge QW FinFETs, a much stronger N_s^2 dependence and temperature independent mobility with varying fin width (Fig. 20) revealed sidewall roughness as the dominant scattering mechanism. Optimization of fin etch to reduce the sidewall roughness is key to achieving even higher hole mobility in s-Ge QW FinFET.

Benchmarking and Conclusions

In conclusion, optimized tri-layer high-κ gate stack exhibiting ultrathin EOT=0.72nm and low gate leakage on Ge was developed. Uniaxially s-Ge QW FinFETs with $W_{Fin}=20$nm was demonstrated with high $\mu_{peak}=700$ cm2/Vs and 220 cm2/Vs at 10^4/cm2 with ultrathin EOT (Fig. 21). The high mobility s-Ge channel FinFET in conjunction with scaled gate stack resulted in the highest $\mu*C_{min}$ product of 3.1×10^{-4} F/Vs (Table 1) among high performance Ge FinFETs. The aforementioned enhancements in transport and gate stack resulted in 5X higher I_{ON} (Fig. 23) for s-Ge QW FinFET indicating promise for future alternate channel p-FinFET device technology.

Acknowledgement

This work was supported by the Pennsylvania State University Materials Research Institute Materials Characterization and Nanofabrication Laboratories and the National Science Foundation Cooperative Agreement No. ECS-0335765.

References

[8] P. Hashemi et. al., EDL 2012
[10] Y. Kamata et. al., VLSI 2009
Fig. 1: (a) Schematic showing device parameters critically optimized and enhanced for high performance p-channel 1.3% compressively strained Ge QW FinFET grown on Si$_{1-x}$Ge$_x$ buffer on 300nm bulk Si substrate.

High-ε/Ge EOT Scaling Approach

(a) Preclean
Hydrogen Plasma Clean – 250C, 100W, 30sec
Oxygen Plasma GeO$_2$ – 250C, 125W, 2sec pulse
50 cycle DI H$_2$O Prepulse
Al$_2$O$_3$/HfO$_2$ 250C ALD
Thermal Ni Gate
Forming Gas Anneal, 300C, 10mins

(b) MOS capacitor fabrication flow

Fig. 3: (a) Schematic showing band alignment for HfO$_2$/Al$_2$O$_3$/GeO$_x$/p-Ge gate stack, (b) MOS capacitor fabrication flow.

Fig. 4: In-situ spectroscopic ellipsometry data for (a) GeO$_x$ thickness showing native oxide etch with H-Plasma, (b) controlled GeO$_x$ formation with pulsed Oxygen Plasma, (c) Al$_2$O$_3$ cap layer deposition for diffusion barrier and nucleation layer and (d) HfO$_2$ deposition by thermal ALD at 250C.

Fig. 5: (a) High resolution cross-section TEM of HfO$_2$/Al$_2$O$_3$/GeO$_x$/Ge gate stack, (b) EDX line scan across the Ge gate stack.

Fig. 6: C-V characteristics of MOS capacitors on p-Ge with varying Al$_2$O$_3$ cap layer thickness and HfO$_2$ thickness after in-situ H-Plasma clean and O-Plasma GeO$_x$ passivation. Low EOT of 0.72nm demonstrated.

Fig. 7: Gate leakage density vs. voltage for HfO$_2$/Al$_2$O$_3$/GeO$_x$/p-Ge MOS capacitors with varying HfO$_2$ thickness indicating 103X reduction.

Fig. 8: Gate leakage vs EOT benchmarking of HfO$_2$/Al$_2$O$_3$/GeO$_x$/p-Ge gate stack fabricated after H-Plasma clean with literature.

Fig. 9: Extracted density of interface states using equivalent circuit method as function of energy in the bandgap for varying Al$_2$O$_3$ and HfO$_2$ thickness.

Fig. 10: Extracted density of interface states using equivalent circuit method vs. EOT at midgap.

Fig. 11: Hysteresis vs Al$_2$O$_3$ and HfO$_2$ thickness with H-Plasma clean and Oxygen plasma oxidation indicating strong dependence on Al$_2$O$_3$ cap layer.
Fig. 12: (a) Schematic of 1.3% s-Ge QW heterostructure with Boron modulation doped SiGe buffer in addition to Phos doping to reduce parallel conduction in the buffer, (b) fabrication process flow for s-Ge QW MOSFET and FinFET with varying fin width, (c) schematic of s-Ge QW FinFET with in-situ H-Plasma clean, oxygen plasma GeO$_x$ formation prior to high-k deposition.

Fig. 13: (a) SEM showing long channel multi-fin device with $W_{Fin}=20$nm and fin pitch of 60nm, (b) cross section TEM showing s-Ge QW FinFET with 60nm fin pitch (c) HR-TEM showing vertical fin profile for 20nm W_{Fin} device.

Fig. 14: Impact of Phosphorus doping depth in SiGe buffer on Id-Vg characteristics of s-Ge QW MOSFETs showing reducing I_{DS} with increasing Phos doping depth.

Fig. 15: (a) I_{DS}-V_{G} characteristic showing impact of Si cap removal prior to high-k deposition indicating 2X increase in I_{DS}, (b) Split CV measured at 1MHz on planar QW MOSFET showing 2.3X higher C_{max} with Si cap removal and GeO$_x$ passivation.

Fig. 16: (a) I_{DS}-V_{G} characteristics w/o Si cap for high-k/s-Ge QW MOSFET and FinFET at $V_{DS}=0.05$V, -0.5V showing high I_{DS} and excellent I_{DS}/I_{OFF}=2x108, (b) $V_{TH,ET}$ vs V_{TH} indicating enhancement mode operation due to confinement for QW FinFETs. A conservative W_{Fin}/No. of fins *(W$_{Fin}$+2T$_{poly}$) was used

Fig. 17: Effective hole mobility of s-Ge QW MOSFET and FinFET with HfO$_2$/Al$_2$O$_3$/GeO$_x$ gate stack showing 2.6X improvement compared to unstrained Ge

Fig. 18: (a) Id-Vg characteristics at V_{DS}=0.5V, I_{DS}=5um for high-k/s-Ge QW MOSFET and FinFET with reducing temperature, (b) Subthreshold swing vs. temperature for planar MOSFET and FinFET

Fig. 19: Temperature dependent hole effective mobility vs hole sheet density for planar QW MOSFET and FinFET indicating N_s dependence

Fig. 20: Hole effective mobility vs temperature for high-k/s-Ge QW MOSFET and FinFET at $N_s=10^{13}$/cm2.

Fig. 21: High field mobility of high-k/s-Ge QW MOSFET and FinFET in this work vs. EOT, compared with s-Ge pMOSFETs w/o Si cap to date.

Table 1: Benchmarking of key device parameters demonstrated in this work with other high performance s-Ge FinFETs till date.

Fig. 23: Benchmarking of L_{th} of the s-Ge MOSFET and FinFETs with in-situ oxidation achieved in this work with other devices from literature.