Interface States at high- κ /InGaAs interface: H₂O vs. O₃ based ALD Dielectric

H. Madan^{1,2}, D. Veksler¹, Y.T. Chen^{1,3}, J. Huang¹, N. Goel¹, G. Bersuker¹ and S. Datta²

¹SEMATECH, Albany, New York 12203, USA, ²Penn State University, University Park, Pennsylvania 16802, USA ³University of Texas at Austin, Texas, USA. E-mail.<u>himanshu@psu.edu</u>

1. Introduction

Interface states at the high-k/III-V interface are considered to be one of the major showstoppers for the implementation of III-V channel MOSFETs in VLSI technology. Due to the large interfacial state density, D_{it}, comparable with density of states of free carriers the standard, high-low freq., Terman, and conductance methods become unreliable. Recently, [1,2] proposed obtaining the parameters of the equivalent admittance circuit (including substrate capacitance, Dit, trap time constant, channel resistance and gate leakage) by fitting the experimental frequency dispersion of the capacitance and conductance curves in a self consistent manner.

In this study, we identify the D_{it} distribution and the traps characteristic time constant vs. the trap energy by combining the above mentioned method [1,2] with the low-high frequency [3] and Terman techniques [4]. We apply the technique to study the defects in the water (H20) based ALD Al2O3/ In0.53Ga0.47As and in the ozone (O₃) based ALD $Al_2O_3/In_{0.53}Ga_{0.47}As$ stacks. H₂O-based ALD allows reduction in the formation of the native oxide at the high-ĸ/IIIV interface, while O₃based oxide is known to contain less OH groups within the high-k resulting in less bulk trapping of carriers. Comparing the extracted trap capture cross-section dependences vs. temperature and trap energy, we conclude that: (i) water-based ALD allows reducing the number of electrically active traps (ii) the traps in the water-based ALD high- κ film respond (recharge) by more than an order of magnitude slower that those in O₃-based high-κ film.

2. Device Fabrication

N and P doped In_{0.53}Ga_{0.47}As was epitaxially grown on a InP substrate. After the ammonia based surface clean the Al₂O₃ films were deposited on In_{0.53}Ga_{0.47}As using either a H₂O-based or O₃-based atomic layer deposition (ALD) followed by post anneal. The TaN/TiN metal was deposited and patterned as top electrode. The AuGe alloy was deposited to form a backside ohmic contact.

3. Results

D_{it} extraction: The admittance characteristics of the fabricated capacitors were measured for 200K to 425K temperature range. Fig. 1 and 2 show the measured capacitance at RT for the H₂O and O₃-based ALD high-ĸ. Fig. 3 shows the calculated ideal C-V dependency for the 8nm Al₂O₃ high-κ/ In_{0.53}Ga_{0.47}As stack [5] taking into account the conduction band nonparabolicity and carrier distribution in Γ , L and X valleys. We have used low temperature and high temperature C-V data sets in order to accurately evaluate the effects of interface and border traps. At 425 K the traps are fast enough ($2\pi f \tau >> 1$, see Fig. 5(b)) for the 1kHz C-V to be considered as a true low frequency C-V. In this case the trap response is quasistatic and the trap capacitance, Cit=qDit. The high temperature low frequency C-V and the "stretch-out" of the low temperature high frequency C-V characteristic (a "true" high frequency C-V) were theoretically reproduced. Fig. 4 shows the result of this iterative fitting exercise for both H2O-based and O3based ALD high-κ. The C-V with non-parabolic (NP) correction including all valleys was used for this exercise. The simulated C-V with Cit represents the quasi-static case and C-V without Cit represents the high frequency case (includes the stretch-out in gate bias due to D_{it}). The evaluated D_{it} from p and n type samples are in good agreement (Fig. 5(a)). The trap density for the O_3 -based ALD is ~1.5 times higher than that of H₂O-based ALD sample.

Interfacial layer analysis: An XPS study on these samples shows the presence of the As-O bonds in the O₃-based ALD sample. The use of O₃ as oxidant for the ALD growth of Al₂O₃ on In_{0.53}Ga_{0.47}As has resulted in excessive interfacial oxidation consistent with [6]. Due to the presence of a native oxide at the oxide-substrate interface the measured oxide capacitance for the O_3 -based ALD is ~ 10% lower than that of the H₂O-based sample.

Trapping kinetics: The characteristic traps capture times (for the mid gap traps) obtained from the conductance peaks (Fig. 5(b)) shows an order of magnitude faster response time for the O₃-based ALD high-ĸ. The extracted capture cross-section of the mid gap traps in both samples were found to be weakly depend on temperature (Fig. 5(b)) and for the O₃-based sample to be ~ 1 orders of magnitude larger than that for the H₂O-based sample. It is opposite to the expected trend if the electrons were to tunnel through the native oxide in the O₃-based sample before they can get trapped by the high-k defects, leading to a decrease in the capture cross-section. This observation indicates that the traps may have a significantly different atomic structure, and chemical bonds. It is worth noting that the energy dependence of the capture time is rather weak in both samples (Fig. 6(a) and 6(b)). Fig. 7 shows the comparison of the mid-gap D_{it} compared with other works reported in literature.

4. Conclusion

By combining the capacitance and conductance analysis techniques, we obtained the D_{it} distribution throughout the band gap of In_{0.53}Ga_{0.47}As capacitors with H₂O-based and O₃-based ALD oxides. The choice of appropriate temperature to obtain the quasi-static C-V and the DC voltage sweep rate is an essential for the correct extraction of D_{it}. Simultaneously we obtained the trap kinetics characteristics. We claim that: (i) the H₂O-based ALD deposition results in a fewer traps in the lower portion of In_{0.53}Ga_{0.47}As band gap, (ii) is

related to the formation of the thicker native oxide in the O₃-based samples; (iii) the mid gap traps in the H₂O-based samples are significantly slower than those in the O₃-based samples, which indicate their different nature.

References

- [1] A. Ali et al, IEEE TED 57 (2010), 742-748
- [2] A. Ali et al, Appl. Phys. Lett. 97 (2010), 143502-143504
- www.ieeesisc.org/tutorials/2010 SISC Tutorial.pdf [3]
- L. Terman, Solid-State Electron. 5 (1962), 285-299 [4]
- [5] V. Ariel-Altschul et al, IEEE TED 39 (1992), P1312
- B. Brennan et al, ECS let. 12 (2009), H205-H207 [6]
- [7] G. Brammertz et al, Appl. Phys. Lett. 95, 202109 2009.
- [8] H. C. Chiu et al, Appl. Phys. Lett. 93, 202903 2008.

1.0

- [9] H. C. Lin et al, Microelectron. Eng. 86, 1554 2009. [10] Y. Xuan et al, IEEE Electron Device Lett. 28, 935 2007.
- [11] Y. Hwang et al, Appl. Phys. Lett. 96, 102910 2010.

(a) H₂O Oxidation 0.8 0.8 0.6 0.6 C 0.4 X 1KHz-1MHz 0.2 0.0∟ _2 300K 」0.0 2 -1 0 Gate Voltage [V] (b) H₂O Oxidation 0.8 0.8 0.7 1KHz-1MHz 0.6 C/C 0.4 X 0.2 300K __0.0 2 0.0 0 -1 1 Gate Voltage [V]

O, Oxidation

(a)

0.8

Fig.1: C-V characteristics as a function of Fig.2: C-V characteristics as a function of frequency of (a) ntype and (b) ptype frequency of (a) ntype and (b) ptype In_{0.53}Ga_{0.47}As Moscap with H₂O based ALD In_{0.53}Ga_{0.47}As Moscap with O₃ based ALD AI203.

Fig.5: Extracted (a) interface trap density and (b) interface trap time constant and capture cross section at $E_F \sim Eg/2$ for the water and ozone based ALD Al₂O₃.

Temperature [K]

350

300

250

Fig.6: Trap time constant as a function of energy and temperature for (a) H_2O and (b) O_3 based ALD AI_2O_3 .

Fig.3: Simulated capacitance showing the effect of non parabolic approximation and satellite valley for In_{0.53}Ga_{0.47}As with 8nm AI_2O_3 high- κ ($\varepsilon r \sim 8$) as a function of gate bias.

Fig.4: Measured true Low and High frequency fitted with calculated C-V with D_{it} for ntype $In_{0.53}Ga_{0.47}As$ Moscap with (a) H_2O and (b) O_3 based ALD Al₂O₃.

Fig.7: Midgap D_{it} evaluated by conductance method at room temperature compared with other work reported in literature.