
Automated Mapping for Reconfigurable Single Electron
Transistor Arrays

Abstract—Reducing power consumption has become one of the primary
challenges in chip design, and therefore significant efforts are being devoted
to find holistic solutions on power reduction from the device level up
to the system level. Among a plethora of low power devices that are
being explored, single electron transistors (SETs) at room temperature are
particularly attractive. Although prior work has proposed a binary decision
diagram(BDD) based reconfigurable logic architecture using SETs, it lacks
an automated synthesis tool for the device. Consequently, in this work, we
develop a product-term-based approach that synthesizes a logic circuit by
mapping all its product terms into the SET architecture. The experimental
results show the effectiveness and efficiency of the proposed approach on
a set of MCNC benchmarks.

I. INTRODUCTION

As technology scaling enables packing of billion transistors into a
single chip, power consumption becomes one of the primary bottle-
necks of continuously meeting Moore’s law. At the system level, there
has been a paradigm shift from frequency scaling of a monolithic pro-
cessor to multiple slower computing nodes that communicate through
a common network fabric [6] [12]. A tight power budget constraint is
one of the primary reasons that causes this paradigm shift. Moreover,
leakage power is becoming a dominant source of power consumption
and several works have looked into mitigating this power wastage [5]
[7].

On the device level, as the power-delay product reaches quantum
limits, a plethora of new device concepts are being explored to exploit
tunneling in semiconductor layers as the operation basis. These novel
device structures use significantly low-drive current of the order of
a few electrons. Numerous demonstrations of the room temperature
operation of Single Electron Transistors (SETs) have proved that these
devices are very attractive as a possible way for extending Moore’s
law.

Majority of these ultra-low power emerging nanodevices suffer
from low transconductance and degraded output resistance, making it
essential to co-explore an emerging device design in conjunction with
a non-CMOS logic architecture. To this end, a novel binary decision
diagram (BDD)-based [1] logic architecture was proposed as a suitable
candidate for implementing logic using ultra-low power nanodevices
[4]. Then, the BDD of a combinational circuit is mapped onto a
hexagonal nanowire network controlled by Schottky wrap gates [3].

In the hexagonal network, a logic function is achieved by a passive
path switching of messenger electrons that arrive at the root node
through either the left arm (“0”) or right arm (“1”) depending on the
control gate of the wrap gates. Each row of the hexagonal fabric is
controlled by a single variable. Both the normal and the complement
of the variable are supplied to a node of the BDD and are used to
control the left and right edges as shown in Fig. 1(a).

A BDD implementation can be mapped onto this fabric and the
variables implementing the given function establish a path in this fabric
from the root node to either a 1 terminal or a 0 terminal to realize the
desired functionality. Fig. 1(b) shows an example of a 2-bit XOR.
There is a current detector at the root associated to every output bit
that measures the current (if any). Depending on the operating modes,
active high or active low, the current flowing is interpreted as a logic
one or a zero (In the active high mode, no current is a logic zero and
presence of current is a logic one and vice-versa in the active low
mode).

i0 1

i0 1 i 10

logic input
xi

information
messenger

entry branch

exit branches
xi = “0” xi = “1”

Fig. 1. A hexagonal fabric. (a) Node devices. (b) An example of a 2-bit XOR.

However, the realization of the BDD architecture in [4] is fixed
and not amenable to functional reconfiguration. This is because the
approach selectively etches all paths that do not lead to a 1 terminal
and also customizes the edges of a hexagon to either be a conducting
nanowire or have a wrapped gate. Consequently, this structure is
not very regular and cannot be restructured to implement a different
function due to the physical etching process involved in its realization.
Furthermore, if any of the nanowire segments or the wrap gates is de-
fective, the whole circuit becomes non-functional. This is a significant
limitation considering that nanowires and few electron nanodevices
have traditionally suffered from the variability and reliability issues.

To solve the problem, a reconfigurable version of SET using wrap
gate tunable tunnel barriers was proposed [2] and the in-depth device
simulation to study the electrostatic properties was presented [8]. This
device can operate in three distinct operation states: a) active b)
open and c) short state based on the wrap gate bias voltages. Such
programmability leads to immense flexibility in designing a circuit.
The device simulation shows that this device can provide an order of
magnitude lower energy-delay than CMOS device [8].

However, the synthesis of a BDD using the device in [2] is manual
rather than automated. The reason is that mapping a reduced ordered
BDD (ROBDD) into a planar SET array could be very complicated,
especially when the BDD has crossing edges, which is typical in
minimized BDDs. In this work, we address this mapping problem
and propose an automated mapping approach. Instead of mapping a
BDD directly, the proposed approach first divides a BDD into a set
of product terms that represent the paths leading to the 1 terminal in
the BDD. Then, it sequentially maps these product terms. Since the
mapping order of the product terms affects the mapping results, we
propose four sorting heuristics to reduce area cost. Additionally, the
automated mapping approach incorporates the granularity and fabric
constraints that are imposed in order to decrease the number of metal
wires used for programming the SET array and for supplying the input
signals, respectively [2].

We conduct experiments on a set of MCNC benchmarks [10]. The
experimental results show that the proposed approach can complete
mapping within 1 second for most of the benchmarks and presents
competitive results to prior manual mapping results. The main contri-
bution of this work is proposing an automated synthesis tool for the
promising energy-efficient SET array architecture.

The rest of this paper is organized as follows: Section II uses an
example to demonstrate the problem considered in this paper, and
introduces some notations. Section III presents the proposed mapping
approach. Section IV discusses and addresses two mapping constraints.
Finally, the experimental results and conclusion are presented in

1

Current detector

1

(a) (b)

a⊕b

a a’

b’ b

Active high

Active low

Short

Fig. 2. (a) A SET array fabric. (b) An example of a XOR b.

a

b b

c c

d

\

d
1

True

False

a b c d

1 1 – –

1 0 1 –

0 0 – 0

0 1 0 –

0 1 1 0 0

a

b b

c c

d

\

d
1 1 0 0

d

\

d

(a) (b)

a

b b

c c

d

\

d
1 0

True

False

Product terms

a b c d

1 1 – –

1 0 1 –

0 1 0 –

0 1 1 0

Fig. 3. An example of eliminating the crossing edges in an ROBDD by node
duplication. (a) The original ROBDD. (b) The resultant BDD.

Sections V and VI.

II. BACKGROUND

A. An example

A SET array can be presented as a graph composed of hexagons. As
shown in Fig. 2(a), like the hexagonal fabric mentioned above, there is
a current detector at the top that measures the current coming from the
bottom of the hexagonal fabric. All the vertical edges of the hexagons
are electrical short. All the sloping edges can be configured as active
high, active low, short or open. An active high edge is controlled by
a variable x. It is conducting and non-conducting when x = 1 and
x = 0, respectively. Conversely, an active low edge is an electrical
opposite of an active high edge and it is controlled by a variable x′.

A Boolean function can be implemented using a SET array. All the
active edges at the same row of the hexagonal fabric are controlled by
a single variable, i.e., a primary input (PI). They determine whether
there exists a path for the current to pass through, and thus, be detected
at the top. If so, the functional output of the array is 1; otherwise, it
is 0. For example, Fig. 2(b) shows a SET array implementing a XOR

b. When a = 1 and b = 0, the current can be detected by passing
through the left path. However, if a = 1 and b = 1, the current cannot
be detected.

Thus, the addressed problem of this work is synthesizing a given
Boolean function into a SET array with minimized area, i.e., the number
of configured hexagons.

Previous work [2] tries to manually map a Boolean function by
directly mapping its BDD into a SET array. However, the mapping
process could be very complicated due to the structural difference of a
BDD and a SET array. For example, Fig. 3(a) shows an ROBDD that
has some crossing edges. Since a SET array is a planar architecture,
much effort is required to avoid having the crossing edges in the
ROBDD when mapping it into a SET array. Node duplication could
be a trivial method for solving this crossing edge issue while not
considering the area overhead. For example, we can eliminate the
crossing edges in Fig. 3(a) by duplicating the node d and the terminals.
The resultant BDD having more nodes is shown in Fig. 3(b). In
addition, determining the exact location of each ROBDD node in a
SET array is a challenge. Thus, to address this problem, we propose
a product term-based method. It first collects all the paths that lead
to the terminal 1 in the ROBDD, i.e., product terms. Then, it maps
each product term into a path in the SET array. The proposed method

root node (0, 0)

4

x 1 4 3 2 0 -1 -2 -3

y

3

2

1

0

node (-3, 3)

left edge
right edge

root node (0, 0)

x 1 3 2 0 -1 -2 -3

y

3

2

1

0

node (-3, 3)

left edge
right edge

-4 4

Fig. 4. An abstract diamond fabric.

simultaneously avoids the crossing edge and the BDD node mapping
issues.

For example, the product terms of a XOR b are 10 and 01. Using
the proposed method, we first map 10 and then 01. Finally, we obtain
the resultant SET array as shown in Fig. 2(b), where the left path is
configured for 10 and the right path is for 01.

B. Notations

For ease of discussion, we use an abstract graph to present a SET
array. Compared to Fig. 2(a), only the configurable edges are preserved
as shown in Fig. 4. In this diamond fabric, each node n, i.e., the root
of a pair of left and right edges, has a unique location (x, y). Based
on the root node located at (0, 0), which is below the current detector,
the y value increases from top to bottom. The x value increases and
decreases from center to right and left, respectively.

For simplification, let n.left and n.right denote the status of the left
and right edges of a node n, respectively. The status could be empty,
high, low, short, or open. empty indicates the edge is not configured
yet (is used primarily for algorithm illustration). high, low, short, and
open indicate the edge is configured as active high, active low, short,
and open, respectively. Additionally, let n(x,y) denote the node located
at (x, y).

III. AUTOMATED MAPPING

In this section, we first discuss the motivation of our method. Next,
we introduce two key mapping procedures. Finally, the overall flow is
presented. Here, we first assume that each edge can be configured
independently without any constraint. In the next section, we will
extend our mapping method considering the granularity and fabric
constraints.

To simplify the mapping problem, we divide a ROBDD into a set
of paths that lead to the terminal 1 in this ROBDD. These paths
represent the product terms. Then we map these product terms instead
of a whole ROBDD. The overall mapping flow includes two important
steps: product term computation and product term mapping.

A. Product term computation

To compute the product terms of a given Boolean function, we first
build its ROBDD. Next, we compute the product terms by traversing
the ROBDD to collect the paths that lead to the terminal 1. For
example, Fig. 3(a) shows an ROBDD. There are four PIs: a, b, c, and
d. We can collect the product terms by traversing the paths leading to
the terminal 1 with depth-first search (DFS). They are abcd = {11−−,
101−, 00−0, 010−, 0110}. In this work, we use the CUDD package
[9] to build ROBDDs and collect the product terms.

Since we map the product terms one by one and each product term
corresponds to a path in the SET array, both the number and the order of
product terms we consider could affect the mapping results. In general,
more product terms result in a larger area. Thus, before collecting
product terms, we will try to minimize the ROBDD by performing
BDD reordering. However, because the BDD reordering operation is
used to minimize the number of BDD nodes instead of product terms,
we only adopt the reordering result when the number of product terms
is reduced. For most benchmarks considered, BDD reordering reduces
the number of product terms. We use the BDD reordering heuristic

0 1 1 0 –

0 1 0 – –

1 1 – – –

1 0 1 – 1

 (a)

1 1 – – –

1 0 1 – 1

0 1 1 0 –

0 1 0 – –

 (b)

0 1 0 – –

1 1 – – –

0 1 1 0 –

1 0 1 – 1

(c)

0 1 1 0 –

0 1 0 – –

1 1 – – –

1 0 1 – 1

 (d)

0 1 1 0 –

0 1 0 – –

1 0 1 – 1

1 1 – – –

 (e)

Fig. 5. Four different sorting results. (a) Original. (b) LexSort. (c) InertiaSort.
(d) ForInertiaSort. (e) BackForInertiaSort.

CUDD REORDER SYMM SIFT in the CUDD package as it achieves
better reduction for most benchmarks compared to the other heuristics
provided by the CUDD package.

Note that although there are other methods, like Espresso [11], which
could compute more concise product terms, we choose to use the
BDD-based computation method. This is because it ensures that each
minterm appears in only one product term. As a result, when we map
each product term into a path in the SET array, exactly one path is
conducting at a time. For example, if we use Expresso to compute the
product terms of the Boolean function in Fig. 3(a), there are only four
product terms: 1−1−, 010−, 0−−0, and 110−. However, since the
minterm 0100 is involved in 010− and 0−−0, when 0100 is applied
to the SET array, there are two conducting paths: one for 010− and
and the other one for 0−−0. Having multiple conducting paths leads
to a higher fanout number that is not preferred for SET devices that
have a low-drive strength.

As for sorting the product terms, we propose four different sorting
methods: LexSort, InertiaSort, ForInertiaSort, and BackForInertiaSort.
Our objective is to make the configured paths of different product terms
share as many edges as possible. The details of the proposed sorting
methods are as follows:

1) LexSort: We sort product terms by comparing the bit values
from the first bit with the relationship: − > 1 > 0. For example, Fig.
5(b) shows the sorting result of the product terms in Fig. 5(a). Using
LexSort, two product terms that have continuous bit value matches
from the first bit will be adjacent. As a result, starting from the root
node, the adjacent product terms could possibly share the edges for the
continuous matching bits.

2) InertiaSort: Each product term has an inertia value that is the
number of bit value matches with all the other product terms. We sort
product terms from large to small by the inertia values. Fig. 5(c) shows
the sorting result. The inertia value of the first product term in Fig. 5(c)
is 1+2+0+2+2 = 7. The inertia values of the other product terms
are 7, 6, and 4, respectively. Using InertiaSort, the product terms that
have more bit value matches with others will be mapped earlier than
those having fewer bit value matches. After a product term having a
larger inertia value is mapped, more product terms could possibly reuse
its configured edges due to the higher bit value matches.

3) ForInertiaSort: Unlike the inertia value, a product term’s forward
inertia value is the number of continuous bit value matches from the
first bit with all the other product terms. We sort product terms from
large to small by the forward inertia values. Fig. 5(d) shows the sorting
result. The forward inertia value of the first product term in Fig. 5(d)
is 1 + 1 = 2. This is because only the second product term has two
continuous bit value matches with it. The forward inertia values of the
other product terms are 2, 1, and 1, respectively. Using ForInertiaSort,
the product terms that have more continuous bit value matches from
the first bit with others will be mapped earlier. The reason behind this
heuristic is that we expect many shared edges to start from the root
nodes and to be connected (continuous bits).

4) BackForInertiaSort: Conversely, a product term’s backward in-
ertia value is the number of continuous bit value matches from the
last bit to the first bit with all the other product terms. We first sort
product terms from small to large by the backward inertia values.
Then, we sort them again from large to small by the forward inertia
values. The sorting result is shown in Fig. 5(e). Unlike the result in

p0: 0 1 1 0

p1: 0 1 0 –

p2: 1 1 – –

p3: 1 0 1 –

Active high

Active low

Short

Open

(a) (b) (c)

(d) (e) (f)

0 -1

0

1

2

3

4

0

1

2

3

4
0 -1 1

0

2

4

1

3

0

2

4

1

3

0

2

4

1

3

0 -1 1 2 0 -1 1 2 0 -1 1 2 3 4 3 4

Fig. 6. A mapping example. (a) Product terms. (b) The mapping result of p0.
(c) The mapping result of p0 + p1. (d) The mapping result of p0 + p1 + p2.
(e) The mapping result of p0 + p1 + p2 + p3. (f) The final mapping result.

Fig. 5(d), the third product term has a smaller backward inertia value.
BackForInertiaSort is used to complement ForInertiaSort. We use the
backward inertia values to distinguish the product terms having the
same forward inertia values, and expect they could share edges near
the leaf nodes.

B. Product term mapping

After product terms computation, we start to map these product
terms. Our objective is to configure a path in the SET array for each
product term, and avoid constructing a path that corresponds to an
invalid product term.

Given a product term p, we start from the root node, and find or
configure an edge for each bit in p from the first bit to the last bit. The
mapping rules are as follows: When the bit value under consideration
is 1 (or 0), we find an active high (or low) edge for it if applicable;
otherwise, we configure an edge as active high (or low) for it. However,
if the bit value is −, we find a short edge if applicable or configure an
edge as short for it. After all the product terms are mapped, we finally
configure the edges that are not configured yet as open.

We use an example in Fig. 6 to demonstrate the mapping approach.
There are four product terms, p0 = 0110, p1 = 010−, p2 = 11−−,
and p3 = 101−, sorted by ForInertiaSort as shown in Fig. 6(a). First,
let us consider p0. Starting from the root node n(0,0), we first configure
n(0,0).left as low for the first bit 0. Next, we configure n(−1,1).right
as high for the second bit 1. Using the same method, we configure
n(0,2).left and n(−1,3).right as high and low for the last two bits
10, respectively. The mapping result is shown in Fig. 6(b). Here, the
decision of configuring the left edge or the right edge of a node depends
on its location (x, y). If x < 0, we first try to configure its right edge.
If inapplicable, we then try to configure its left edge. Conversely, if
x ≥ 0, we try the left edge first and then the right edge.

Next, for p1, because the first two bits are the same as that of the
first product term, we partially reuse this mapping result. Next, we
configure n(0,2).right as low and n(1,3).left as short for the last two
bits 0−, respectively. The mapping result is shown in Fig. 6(c).

For p2, after we configure n(0,0).right as high for the first bit 1, we
first try to configure n(1,1).left as high for the second bit 1. However,
since n(0,2).left and n(0,2).right have been configured as high and low
that are inconsistent to the third bit −, we undo the configuration of
n(1,1).left and then configure n(1,1).right as high for the second bit 1.
Finally, both n(2,2).left and n(1,3).left are configured as short for the
last two bits −−. The mapping result is shown in Fig. 6(d).

Next, let us consider p3. After finding n(0,0).right = high for
the first bit 1, we do not configure n(1,1).left as low for the sec-
ond bit 0. This is because if we do so, there will exist a path
n(0,0)→n(1,1)→n(0,2)→n(1,3)→n(0,4), which corresponds to an in-
valid product term 100−. Additionally, since n(1,1).right has been
configured as 1, we expand the structure by configuring both n(2,0).left

=

1 1 1 – 0

0 1 0 – 0

0 1 0 0 1

Active high

Active low

Short

Open

0

1

2

3

0 1 2 -1

4

5

0

1

2

3

0 1 2 -1

4

5

1 1 1 – 0

0 1 – – 0

0 1 1 1 1

3

0

1

2

3

0 1 2 -1

4

5
3

0

1

2

3

0 1 2 -1

4

5
3 4

(a) (b)

(c) (d)

Fig. 7. Incorrect mapping examples.

and n(2,0).right as short, and start from n(3,1) for the last three bits.
The mapping result is shown in Fig. 6(e). Finally, we configure all the
non-configured edges as open, and obtain the final mapping result in
Fig. 6(f).

To avoid creating an invalid path, we need to prevent two paths
from merging and then branching during mapping. Thus, when we
detect a merging node, like n(0,2) for p2 or p3, we will check if
there exists only one path from n(0,2). If not, there possibly exists
an invalid path. Thus, we prevent the paths from merging. With this
checking rule, each path from top to bottom exactly corresponds to one
product term. In addition, from the viewpoint of conducting paths, this
checking rule is not enough. We have to add another rule considering
the conducting path issue. Fig. 7(a), (b) show two mapping examples,
which are incorrect while satisfying the merging and branching rule.

In Fig. 7(a), when the input pattern is 11101, which is not a
minterm, the current can be detected at the top. This is because
the right edge of n(−1,3), the left edge of n(1,3), and the right
edge of n(1,3) as highlighted are conducting simultaneously.
This partial conducting path forms like a bridge that connects
two paths such that the current can pass through the path
n(1,5)→n(2,4)→n(1,3)→n(0,4)→n(−1,3)→n(0,2)→n(−1,1)→n(0,0).
In addition, a partial conducting path could be composed of the
edges at the different rows. For example, Fig. 7(b) shows a partial
conducting path that crosses two rows as highlighted. This path,
n(3,3)→n(2,2)→n(1,3)→n(0,4)→n(−1,3), constructs an invalid
conducting path for the input pattern 11111.

The necessary condition for causing a partial conducting path is
that there are at least two adjacent conducting edges. Thus, if a
configuration results in two adjacent edges that could be conducting
simultaneously, we check whether they create a partial conducting path
that constructs an invalid path. If so, we avoid this configuration. Fig.
7(c) and Fig. 7(d) show the correct mapping results for the product
terms in Fig. 7(a) and Fig. 7(b), respectively.

Additionally, because the root node has only two edges (left and
right), in order to successfully map all product terms, three kinds of
bit values, 0, 1, and −, cannot simultaneously appear as the first bits of
different product terms. If they appear simultaneously, we divide each
product term having − in the first bit into two product terms before
mapping: one begins with 0 and the other begins with 1. Furthermore,
if there are two different kinds of bit values appearing in the first bits of
all product terms, we will initially configure n(0,0).left and n(0,0).right
based on the first bit values to ensure n(0,0).left 6= n(0,0).right for
successfully mapping all product terms.

Fig. 8 shows the proposed recursive algorithm of product term
mapping. In the main function, Mapping(), we first configure n(0,0).left
and n(0,0).right based on the first bit values of all the product terms
to ensure n(0,0).left 6= n(0,0).right, when there are two different first

Mapping(set PTs) // PTs: product terms
1. Configure n(0,0).left and n(0,0).right based on the first bit values of the

product terms in PTs;
2. For each product term t in PTs

2.1. If (LeftConfigure(t, 0, 0)), continue;
2.2. If (RightConfigure(t, 0, 0)), continue;
2.3. Expand(t);

3. Configure all the edges that are not configured yet as open;
bool LeftConfigure(productterm t, int x, int y)

1. If n(x,y).left is inconsistent to the yth bit in t, return 0;
2. If n(x−1,y+1) is a merging node and there is more than one path from

n(x−1,y+1), return 0;
3. If the configuration of n(x,y).left will result in a partial conducting path

that constructs an invalid conducting path, return 0;
4. If n(x,y).left is empty, configure it based on the mapping rules;
5. If (x− 1 < 0)

5.1. If (RightConfigure(t, x− 1, y + 1)), return 1;
5.2. If (LeftConfigure(t, x− 1, y + 1)), return 1;

6. If (x− 1 ≥ 0)
6.1. If (LeftConfigure(t, x− 1, y + 1)), return 1;
6.2. If (RightConfigure(t, x− 1, y + 1)), return 1;

7. Undo n(x,y).left if necessary, and return 0;
bool RightConfigure(productterm t, int x, int y)

1. If n(x,y).right is inconsistent to the yth bit in t, return 0;
2. If n(x+1,y+1) is a merging node and there is more than one path from

n(x+1,y+1), return 0;
3. If the configuration of n(x,y).right will result in a partial conducting path

that constructs an invalid conducting path, return 0;
4. If n(x,y).right is empty, configure it based on the mapping rules;
5. If (x− 1 < 0)

5.1. If (RightConfigure(t, x+ 1, y + 1)), return 1;
5.2. If (LeftConfigure(t, x+ 1, y + 1)), return 1;

6. If (x− 1 ≥ 0)
6.1. If (LeftConfigure(t, x+ 1, y + 1)), return 1;
6.2. If (RightConfigure(t, x+ 1, y + 1)), return 1;

7. Undo n(x,y).right if necessary, and return 0;
bool Expand(productterm t)

1. Determine the expansion direction (left or right) based on the first bit in
t.

2. If the expansion direction is left, x = −2; otherwise, x = 2;
3. While(1)

3.1. Configure n(x,0).left and n(x,0).right as short if they are empty;
3.2. If (x− 1 < 0)

3.2.1 If (RightConfigure(t, x− 1, 1)), return 1;
3.2.2 If (LeftConfigure(t, x− 1, 1)), return 1;
3.2.3 x = x− 2;

3.3. If (x− 1 ≥ 0)
3.3.1 If (LeftConfigure(t, x+ 1, 1)), return 1;
3.3.2 If (RightConfigure(t, x+ 1, 1)), return 1;
3.3.3 x = x+ 2;

Fig. 8. The algorithm of product term mapping.

bit values. Next, we start to configure all the product terms from the
root node n(0,0). For each product term t, we use a DFS-like method
to construct a path for it. LeftConfigure() and RightConfigure()
configure the left and right edges of a node, respectively. If we cannot
successfully map t from n(0,0), we expand the structure by using
Expand(). Finally, we configure all the edges that are not configured
yet as open.

In LeftConfigure(), we first check if the left edge of a node n(x,y)

is inconsistent to the yth bit in t. They are inconsistent when n(x,y).left
is configured and they do not satisfy the mapping rules: high for 1,
low for 0, and short for −. If so, we return to the last procedure
to consider the other edges or nodes. If they are consistent, we then
check whether the situation that two paths merge and then branch
occurs. Here, n(x−1,y+1) is the sink node of the left edge of n(x,y). If
n(x−1,y+1) is a merging node and there is more than one path from it,
there exists two merging and branching paths. If not, we further check
if the configuration of n(x,y).left will result in a partial conducting path
that constructs an invalid conducting path. If not, we then configure
n(x,y).left based on the mapping rules if n(x,y).left is empty. Next, we
perform LeftConfigure() or RightConfigure() on n(x−1,y+1) for the
next bit based on the value of x. However, if we finally fail to map t

Input: a Boolean function (f)

1. Construct an ROBDD (dd) of f by using the CUDD package

2. Reorder dd by using the heuristic

CUDD_REORDER_SYMM_SIFT in CUDD

1. Compute all the product terms (PTs) by traversing dd

2. Preprocess PTs to prevent 0, 1, and – from appearing as the

first bits simultaneously

3. Sort PTs by using the proposed heuristic

Map PTs into a SET array by using the

proposed mapping algorithm

Output: a configured SET array

Fig. 9. The overall mapping flow.

due to the configuration of n(x,y).left, we undo it and then consider the
other edges or nodes. RightConfigure() is similar to LeftConfigure(),
but considers the configuration of a right edge.

In Expand(), we first determine the expansion direction. For exam-
ple, suppose n(x,y).left is high. If the first bit of t is 1, the expansion
direction is left; otherwise, it is right. The direction also determines
the initial value of x. x is −2 when the direction is left; otherwise,
it is 2. Next, we start to construct a path using the same method for
the second bit to the last bit in t. First, we configure n(x,0).left and
n(x,0).right as short. Second, we determine the new root node for
this configuration. It is n(x−1,1) if the direction is left; otherwise, it is
n(x+1,1). However, if we still fail to map t, we expand the structure
again and x is increased or decreased by 2 based on the expansion
direction.

C. Overall mapping flow

Fig. 9 shows the overall mapping flow. The input is a Boolean
function (f). In step 1, we first construct an ROBDD (dd) of f
by using the CUDD package. Then, we reorder dd by using the
heuristic CUDD REORDER SYMM SIFT in cudd. In step 2, we first
compute all the product terms (PTs) of f by traversing dd. Next, we
preprocess PTs to prevent 0, 1, and − from appearing as the first bits
simultaneously. Finally, we sort PTs by using the proposed heuristic.
In step 3, we map PTs into a SET array by using the proposed
mapping algorithm. Finally, we get a configured SET array.

IV. MAPPING CONSTRAINTS

In this section, we discuss two mapping constraints, granularity and
fabric constraints, which limit the status combinations of a pair of left
and right edges of a node.

A. Configuration granularity constraint

The configuration circuitry, which involves metal wires, is used to
determine whether the SET is in open, short or active mode. Since the
metal wire pitches can lead to lower logic density, the same wires can
be used to program multiple SETs simultaneously to reduce the metal
wires. However, it also imposes a restriction that they are programmed
to the same state. Consequently, when two edges of the SET array
share their configuration circuitry, the combination of n.left and n.right,
(n.left, n.right), must be one of (high, low), (low, high), (short,
short), and (open, open), where n is a node in the SET array.

According to the constraint, when one edge of the root node is
configured as short, the other edge must be short as well. Thus,
before mapping, unless the first bits of all the product terms are −, we
divide each product term whose first bit is − into two product terms:
one has the first bit 0 and the other one has the first bit 1.

The algorithm in Fig. 8 maps product terms without any constraint.
It can be easily extended to consider the granularity constraint by
modifying the configuration method. Originally, two edges of a node

(a) (b)

0

1

2

3

4

0 -1 1 2 3 4 -2 5 6 0 -1 -2 1 -3 -4 -5 -6 -7 -8 -9

Fig. 10. The mapping results with (a) granularity constraint, and (b) fabric
constraint.

are configured separately. To consider this granularity constraint, we
configure them at the same time. For example, when we configure one
edge of a node as high (or low), we also configure the other edge as
low (or high). Similarly, when one edge is short, the other edge is
short as well.

Fig. 10(a) shows the mapping result for the same set of product
terms in Fig. 6(a) with the granularity constraint. Here, not all paths are
connected to the current source. This is because we configure two edges
of a node for each bit at a time. When we finish mapping the last bit
of a product term, there are two paths are constructed simultaneously.
Thus, we only connect the path with respect to the product term to the
current source.

Since two edges are configured simultaneously, we check if merging
and branching paths occur for both of these two edge configurations to
avoid creating invalid paths. Additionally, because not all configured
edges finally lead to the current source, when a partial conducting path
is detected, we further check if it really causes an invalid conducting
path. If not, it is allowed. For brevity, we omit the detailed mapping
algorithm considering the granularity constraint.

B. Fabric constraint

In SET array implementation, the inputs to the active edges in one
row need to be hard wired and they are not configurable. Each active
edge is connected to either x or its complement x′ wires for the row.
The pattern of connections of x and x′ in a row defines the SET fabric.
For example, using x to control all left edges and x′ to control the right
edges results in the symmetric fabric proposed in [2]. In such an array,
both (high, low) and (low, high) cannot simultaneously appear at the
same row in a SET array. Note that the entire row pattern of (high,
low) (or (low, high)) can be changed to (low, high) (or (high, low))
by swapping the normal value and its complement in the control input
signals for the row.

To satisfy this symmetric fabric constraint, we need to identify which
combination ((high, low) or (low, high)) appears at a certain row.
One method is to follow the first configuration result at the row. For
example, if (high, low) is first configured at a row, we then do not
configure (low, high) at this row. Another easy method is to allow
only one of (high, low) and (low, high) to appear in a SET array.
For example, for a bit value 1 or 0, we can always configure the left
edge as high and the right edge as low, i.e., only (high, low) is
allowed. For simplification, we use the second method in this work.

Fig. 10(b) shows the mapping result for the same set of product
terms in Fig. 6(a) considering the fabric constraint. In this example,
only (high, low), (short, short), and (open, open) are allowed.

V. EXPERIMENTAL RESULTS

We implemented the algorithm in C language. The experiments
were conducted on a 2.67 GHz Linux platform (Red Hat 5.5). The
benchmarks are from the MCNC benchmark suite [10]. For each
benchmark, we separately map the Boolean function of each primary
output (PO), and measure the total number of configured hexagons and
the total CPU time. In the experiments, we compare different product
term sorting heuristics and mapping constraints.

Table I summarizes the experimental results. Column 1 lists the
benchmarks. Except the C17 benchmark, all the benchmarks have the

TABLE I
THE EXPERIMENTAL RESULTS OF USING DIFFERENT PRODUCT TERM

SORTING HEURISTICS AND MAPPING CONSTRAINTS.

Bench. PI PO PT
Constraint-free Granu. Fabric

Lex Inert. FInert. BFInert. FInert. FInert.
C17 5 2 8 *15 *15 16 16 41 42

cm138a 6 8 48 *71 102 72 72 272 336
x2 10 7 33 *142 152 146 148 689 755

cm85a 11 3 49 220 185 172 *170 590 521
cm151a 12 2 25 406 427 *400 *400 824 1018
cm162a 14 5 37 *244 308 285 273 980 1134

cu 14 11 24 217 218 217 *208 572 612
cmb 16 4 26 95 138 *80 *80 497 199

cm163a 16 5 27 226 *196 229 227 828 881
pm1 16 13 41 262 257 256 *254 887 863
pcle 19 9 45 274 *259 268 268 1281 1595

sct 19 15 142 1438 *1270 1449 1352 3808 4494
cc 21 20 57 573 595 *545 555 2060 2250
i1 25 16 38 493 479 *463 *463 1635 1356
lal 26 19 160 1741 1949 *1614 1627 7519 8542

pcler8 27 17 68 660 764 *655 *655 2548 2424
frg1 28 3 399 5706 5362 5286 *5119 11151 13056

c8 28 18 94 *741 748 782 773 4502 4721
term1 34 10 1246 22635 23864 *21404 23016 59940 79049
count 35 16 184 1563 1523 *1099 1221 12489 14282
unreg 36 16 64 1046 921 949 *910 4416 4520

b9 41 21 352 *5395 8102 5588 5841 21502 20503
cht 47 36 92 1747 *1704 1747 1949 7563 7205

apex7 49 37 1440 32034 41936 *30147 31843 98878 129175
example2 85 66 430 8529 9082 *8510 8608 47378 47979

Total 86473 100556 82379 86048 292850 347512
Best count 6 5 10 9

crossing edge issue in their ROBDDs. Directly mapping each of these
ROBDDs into a SET array could be very difficult. Columns 2 and
3 list the number of PIs and POs in each benchmark, respectively.
Column 4 lists the number of computed product terms. The remaining
columns list the mapping results in terms of the number of hexagons
by using different sorting heuristics and constraints. The number
marked with “*” means that it is the best result among all sorting
heuristics. Columns 5 to 8 are the constraint-free mapping results
by using LexSort, InertiaSort, ForInertiaSort, and BackForInertiaSort,
respectively. Columns 9 and 10 are the mapping results applying the
granularity and fabric constraints by using ForInertiaSort only. This is
because the ForInertiaSort heuristic has better results for considering
all benchmarks or large benchmarks in the experiments. We omit the
results by using the other sorting heuristics due to page limit.

For example, the C17 benchmark has 5 PIs and 2 POs. The total
number of computed product terms are 8. For constraint-free mapping,
the mapping algorithm configured 15, 15, 16, and 16 hexagons to
implement the benchmark function, when respectively using LexSort,
InertiaSort, ForInertiaSort, and BackForInertiaSort. For the granularity
and fabric constraints, the mapping algorithm with ForInertiaSort
configured 41 and 42 hexagons, respectively.

According to Table I, there is no a specific sorting heuristic that
completely outperforms the others for all the benchmarks. By all
accounts, ForInertiaSort results in the best mapping for considering
all benchmarks. Additionally, when the constraints are considered, the
number of configured hexagons increases. This is because the number
of edges shared by different paths decreases. As for the CPU time, the
proposed method can map each benchmark within 1 second except the
term1 and apex7 benchmarks that spent approximately 6 seconds.

Furthermore, we compare the experimental results with that reported
in a previous work, which manually maps a BDD into a SET array
[2]. Table II summarizes the comparison on the number of config-
ured hexagons for a set of small benchmarks which are able to be
manually mapped. According to the results, the proposed automated
mapping approach, either with the fabric constraint or not, requires
less hexagons for implementing the 2-bit adder benchmark while
needs more hexagons for implementing the C17 and the 4-bit parity
benchmarks, compared to the manual mapping approach.

In the manual mapping approach, it simultaneously maps multiple

TABLE II
THE EXPERIMENTAL RESULTS OF MANUAL MAPPING AND AUTOMATED

MAPPING.

Benchmark
Manual mapping [2] Automated mapping

Constraint-free Fabric Constraint-free Fabric Granu.*
C17 12 20 15 42 41

2 to 4 decoder 4 4 4 4 4
4-bit parity 6 6 9 14 14
2-bit adder 51 128 13 42 34

* The previous work [2] does not report the results for considering the granularity
constraint and is a manual process that does not scale for large circuits.

outputs that could share some sub-circuits into one SET array. When
many hexagons are shared by the different outputs, this approach can
save much area in terms of the number of hexagons. This is the reason
that the results of the C17 and the 4-bit parity benchmarks are better
than ours. In the future, we will focus on extending our approach
for automated mapping of multiple outputs with maximized shared
hexagons.

However, since multiple outputs are mapped into one SET array,
the manual mapping approach may require extra spacing hexagons to
isolate the conducting paths of different outputs, and thus, results in
a larger area if a poor variable ordering is used. The results of the 2-
bit adder benchmark demonstrate this situation. The proposed approach
saves more than 2/3 area in terms of the number of hexagons compared
to the manual mapping approach. Thus, the proposed automated
mapping method is an efficient and effective approach that saves much
manual effort on the SET array realization.

VI. CONCLUSION

In this paper, we propose a product-term-based approach that can
efficiently map a Boolean function into a SET array. It solves the
problem of automatically mapping a BDD into a SET array that
previous works suffer from. The proposed approach simplifies the
mapping problem by transforming a BDD into a set of product terms,
and then individually mapping these product terms. Additionally, four
product term sorting heuristics are proposed to enrich the approach. The
granularity and fabric constraints can also be handled by the proposed
approach. The experimental results show its effectiveness and efficiency
of mapping a set of MCNC benchmarks. Our automated mapping is a
key enabler for using the promising BDD technology.

REFERENCES

[1] R. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,”
IEEE Trans. Computers, vol. 35, pp. 677-691, Aug. 1986.

[2] S. Eachempati, V. Saripalli, V. Narayanan, and S. Datta, “Reconfigurable
Bdd-based Quantum Circuits,” in Proc. Int. Symp. on Nanoscale Architec-
tures, 2008, pp. 61-67.

[3] H. Hasegawa and S. Kasai, “Hexagonal Binary Decision Diagram Quan-
tum Logic Circuits Using Schottky In-Plane and Wrap Gate Control of
GaAs and InGaAs Nanowires,” Physica E: Low-dimensional Systems and
Nanostructures, vol. 11, pp. 149-154, Oct. 2001.

[4] S. Kasai, M. Yumoto, and H. Hasegawa, “Fabrication of GaAs-based
Integrated 2-bit Half and Full Adders by Novel Hexagonal BDD Quantum
Circuit Approach,” in Proc. Int. Symp. on Semiconductor Device Research,
2001, pp. 622-625.

[5] M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi, Low Power
Methodology Manual: For System-on-Chip Design, Springer, 2007.

[6] S. W. Keckler, K. Olukotun, and H. P. Hofstee, Multicore Processors and
Systems, Springer, 2009.

[7] C. Piguet, Low-power CMOS Circuits: Technology, Logic Design and CAD
Tools, CRC Press, 2006.

[8] V. Saripalli, L. Liu, S. Datta, and V. Narayanan, “Energy-Delay Perfor-
mance of Nanoscale Transistors Exhibiting Single Electron Behavior and
Associated Logic Circuits”, Journal of Low Power Electronics (JOLPE),
vol. 6, pp. 415-428, 2010.

[9] F. Somenzi, CUDD: CU decision diagram package - release 2.4.2, 2009.
http://vlsi.colorado.edu/∼fabio/CUDD/

[10] S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 3.0,”
Tech. Report, Microelectronics Center of North Carolina, 1991.

[11] http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
[12] http://www.intel.com/go/terascale/

