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Compound semiconductor high electron mobility transistors (HEMTs) have recently gained a lot of interest for 
future high-speed, low-power logic applications due to their high mobility and high effective carrier velocity [1].  
Conventional In0.7Ga0.3As HEMTs with 50 to 150nm gate-length (LG) have been experimentally demonstrated [2] 
with excellent device performance. In this paper, (i) we use two-dimensional numerical drift-diffusion simulations 
[3] to model the conventional In0.7Ga0.3As HEMTs with different LG from 15 to 200nm and investigate its scalability 
for future logic applications. (ii) An accurate estimation of effective mobility (μeff) and effective carrier velocity 
(injection) is presented, highlighting the relevance of ballistic mobility in these short-channel HEMTs. (iii) Due to 
degradation in performance of the conventional scaled In0.7Ga0.3As HEMT at LG=15nm, three novel HEMT device 
architectures are studied and the design for the ultimate scaled transistor is proposed. 

Fig. 1 shows the simulated In0.7Ga0.3As HEMT device structure with a composite channel consisting of 3/8/4nm 
of In0.53Ga0.47As/In0.7Ga0.3As/In0.53Ga0.47As and buried Pt gate electrode on In0.52Al0.48As barrier layer. Fig. 2 
compares the transfer characteristics of the simulated and the experimental [2] 50nm composite In0.7Ga0.3As HEMTs. 
The simulated characteristics agree very well with the experimental data and thus the model parameters are 
calibrated. In simulation we use the Canali mobility model with μlowfield=12,000 and 10,000cm2/Vs for In0.7Ga0.3As 
and In0.53Ga0.47As, respectively, and α=0, β=1. To analyze the scaling behaviour, LG in Fig. 1 is varied from 15 to 
200nm and subthreshold-slope (SS), drain-induced barrier lowering (DIBL), threshold voltage (Vt) roll-off, ION/IOFF 
ratio and gate-delay (CV/I) are compared to the experimental data in Fig. 3 and Fig. 4. In addition to LG scaling, 
side-spacing (LSIDE) is also decreased from 80 to 15nm and its impacts on the device performance are shown in table 
1. One can find that the lateral scaling causes the overall electrostatic integrity to deteriorate due to severe short-
channel effects (SCE). In order to ensure LG scaling down to 15nm and beyond, the vertical scaling of the 
conventional In0.7Ga0.3As HEMT is, therefore, the only remaining option. The insulator thickness, TINS and channel 
thickness, TCH are reduced from 7 to 4nm and 15 to 7nm, respectively and the simulation results are shown in table I. 
Vertical scaling results in better gate control and, thereby, SS, DIBL, ION/IOFF ratio are significantly improved. 
Further, the effect of increasing the buffer layer doping (NA) from 1x1017 to 5x1017 cm-3 is investigated and table I 
shows that as NA is increased, SCE improves, but ION/IOFF ratio degrades due to pinch-off of the access region.  

As the device scales down, the short-channel HEMTs are believed to be operating in the ballistic regime [4] and 
this ballistic effect causes μeff to decrease significantly compared to long-channel HEMTs (Fig. 5). To investigate 
the effect of this ballistic mobility in our simulation, μeff for 50, 100 and 150nm LG In0.7Ga0.3As HEMTs are 
extracted from the ID-VG at low-drain bias [5] as shown in Fig. 6 (a). μeff is extracted from equation in Fig. 6 (a) 
which is fitted to our simulation data. In this equation, Cgg is a combination of barrier capacitance and centroid 
capacitance and, θ and β are the fitting parameters to reflect the dependence of gate electric field on the channel 
transport. From Fig. 6 (a), it is clear that μeff reduces as LG is decreased. The extracted short channel mobility is 
compared with the calculated mobility (1/μeff = 1/μballistic+1/μbulk, μballistic=2qL/πmvth) in Fig. 6 (b) which directly 
arises from the transmission factor being the ratio of the mean free path to the physical LG. This indicates that the 
mobility reduction in short-channel HEMTs is directly related to the ballistic effect. Fig. 7 plots the effective carrier 
velocity vs DIBL for 15 to 200nm LG In0.7Ga0.3As HEMTs. This shows that the effective carrier velocity increases as 
the electrostatic integrity worsens. Compared to the strained Si n-MOSFETs, In0.7Ga0.3As HEMTs show ~ 4-5 times 
higher effective carrier velocity. Thus, in spite of the mobility reduction with LG, In0.7Ga0.3As HEMTs still look very 
promising because we can achieve higher effective carrier velocity near the source end due to its lower conductivity 
effective mass and higher ballistic injection efficiency. To achieve higher drive current, ~4-5 X higher effective 
velocity in In0.7Ga0.3As HEMT is a necessity because it is expected to have ~2-3 X lower channel charge compared 
to Si MOSFETs at comparable operating bias [6]. 

Finally, based on the scaling behavior analysis of In0.7Ga0.3As HEMTs (Fig. 3, Fig. 4 and Table 1), we study 3 
novel device architectures for future logic applications. Device structures for Double-Gate HEMT (DG-HEMT), 
Inverted HEMT (i-HEMT) and HEMT with twin-delta doping layer (HEMT with TDD) and higher buffer layer 
doping are shown in Fig. 8. Twin delta doping is incorporated to mitigate the access resistance problem. Their 
performance (SS, DIBL, Vt, ION/IOFF ratio, CV/I, veff) are compared to non-planar Si n-MOSFETs in Fig. 9. In this 
case, LG and LSIDE are aggressively scaled down to 15nm. Fig. 9 shows that Double-Gate In0.7Ga0.3As HEMT has the 
best performance in terms of SCE, thus making it a strong candidate for the design of the ultimate scaled transistor. 
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Fig. 1 Simulated device structure [2] 
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   Fig. 2 Calibration of ID-VG  
       of In0.7Ga0.3As HEMT for device in Fig.1 

Table 1. Performance improvement with vertical scaling 
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Fig. 4 CV/I vs LG for device in Fig.1 
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Fig. 6(a) μeff vs (VG-Vt) 
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Fig. 3 FOM comparison for device in Fig. 1  
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Fig. 5 μball vs LG 
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Fig. 6 (b) μeff vs LG 
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Fig. 7 veff vs DIBL 
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Fig. 8 (b) Schematic of  

Inverted (i) In0.7Ga0.3As HEMT 
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   Fig. 8 (c) Schematic of  

In0.7Ga0.3As HEMT with TDD 
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 Fig. 9 Device performance  
for 3 new design schemes of In0.7Ga0.3As HEMT 
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