Small Signal Response of Inversion Layers in High Mobility In$_{0.53}$Ga$_{0.47}$As MOSFETs Made with Thin High-κ Dielectrics

Ashkar Ali, Student Member, IEEE, Himanshu Madan, Student Member, IEEE, Sergei Koveshnikov, Serge Oktyabrsky, Senior Member, IEEE, Rama Kambhampati, Tassilo Heeg, Darrell Schlom and Suman Datta, Senior Member, IEEE

Abstract—Ultra-high mobility compound semiconductor-based MOSFETs and quantum-well FETs could enable the next generation of logic transistors operating at low supply voltages since these materials exhibit excellent electron transport properties. While the long channel In$_{0.53}$Ga$_{0.47}$As MOSFETs exhibit promising characteristics with unpinned Fermi level at the InGaAs-dielectric interface, the high field channel mobility as well as sub-threshold characteristics needs further improvement. In this work, we present a comprehensive equivalent circuit model that accurately evaluates the experimental small signal response of inversion layers in In$_{0.53}$Ga$_{0.47}$As MOSFETs fabricated with LaAlO$_3$ gate dielectric and enables accurate extraction of the interface state profile, the trap dynamics and the effective channel mobility.

Index Terms—High-κ Dielectric, InGaAs, Interface States, Small Signal Admittance Modeling, Split Capacitance Voltage

I. INTRODUCTION

ULTRA-HIGH mobility compound semiconductor-based (e.g. Indium antimonide, Indium arsenide and In$_x$Ga$_{1-x}$As) MOSFETs and quantum-well FETs could enable the next generation of logic transistors operating at low supply voltages since these materials exhibit excellent low-field and high-field electron transport properties [1]-[3]. Effective channel mobility as a function of the transverse effective electric field or inversion carrier density is an important metric for characterizing the performance of In$_{0.53}$Ga$_{0.47}$As based MOSFETs since it not only affects the long channel MOSFET performance directly but also determines indirectly the short channel MOSFET performance in the non ballistic regime by influencing the source side injection velocity [4]. The split C-V measurement of the MOSFET inversion capacitance is the standard technique of extracting the effective channel mobility of MOSFETs, which involves direct estimation of the mobile inversion charge density (N_{inv}) through the gate to channel capacitance (C_{gc}) as a function of the gate to source voltage (V_g) as given by

$$Q_{inv} = \int_{-\infty}^{V_g} C_{gc}(V) dV. \quad (1)$$

While this method is reliable and highly accurate for most Silicon based MOSFETs including the high-κ-metal-gate Si MOSFETs, it is less straightforward in the case of In$_{0.53}$Ga$_{0.47}$As MOSFETs. In InGaAs-based MOSFETs, the complex nature of the semiconductor-dielectric interface with relatively high density of interface states, D_{it}, can exhibit a capacitance, C_{it}, that contributes significantly to the measured C_{gc}, even in inversion leading to an over estimation of extracted N_{inv}. This can lead to incorrect evaluation of the effective channel mobility. In$_{0.53}$Ga$_{0.47}$As and high-κ dielectric interfaces are known to possess interface defects. Although the exact origin of the defects is still under debate there is evidence that compound semiconductors exhibit interface states that arise from the native defects, such as Ga or As dangling bonds as well as Ga–Ga or As–As like-atom bonds created by unwanted oxidation during the process of gate dielectric formation. It has been proposed that the As–As anti bonding states due to local excess arsenic created during the gate oxide deposition can lead to a distribution of states that extend into the conduction band [5],[6]. The presence of interface states near the conduction band leads to fast trap response as the Fermi level approaches and enters the conduction band in the inversion regime. Many recent publications of III–V MOSFETs have reported split C-V measurements and the resultant mobility calculated from those measurements [7]–[9]. Frequency dispersion due to C_{it} as well as lumped and distributed resistance effects in the inversion regime has strongly influenced the C_{gc} vs V_g (or C-V) curves resulting in incorrect mobility calculations.

In this paper we will outline a novel technique that self-consistently solves the capacitance-voltage (C-V) and conductance-voltage (G-V) measurement data as a function of gate bias and small signal AC frequency to uniquely determine the D_{it} response as well as the true inversion carrier response.
for a given voltage. This technique enables us to extract the true inversion capacitance (C_{inv}) as a function of temperature and gate bias in the inversion regime. The impact of parameters such as oxide capacitance, tunnel conductance, fixed series resistance, distributed channel resistance, and interface state capacitance and conductance on the extraction of true inversion carrier density is systematically studied using the experimental data. Various methods have been reported in the literature to correct for interface state density. The method proposed by Hinkle et al in [10] requires the low temperature C-V to be free from dispersion due to D_n. The method proposed by Zhu et al in [11] compares the measured C-V data with the simulated ideal C-V to account for the stretch out in the C-V and the output conductance (g_{oa}) characteristics. This method also assumes that the experimental inversion response of the carriers is free from frequency dispersion due to interface states, which may be applicable for Silicon and Germanium based materials where the inversion carrier densities are high due to high density of states (DOS) but not for III-V systems. Martens et al [12] proposed the full conductance technique which is suitable for extracting the interface state density across the entire band gap for any material system. However, Martens’ approach requires detecting the exact location of the conductance peak due to interface states, which depends on the measurement AC frequency and the temperature. Also, the technique does not allow direct extraction of the inversion carrier density. Unlike the first two approaches [11], [12], our work does not assume a priori that a low temperature and high frequency C-V data is necessarily free from D_n effect. Instead, our technique directly extracts the interface state density, trap time constant and the frequency independent inversion channel capacitance by directly solving an equivalent circuit model from the measured admittance values. Another key difference in our proposed method from the commonly used full conductance technique [12, 13] is that, we do not need information about the peak position in the measured conductance (G_{ox}/α) versus frequency; we rather solve the conductance and the capacitance contributions of D_n in a self consistent manner over the entire frequency and voltage range. This allows us to extract the D_n distribution over a wider range of energy than given by the peak conductance method for a given frequency range of the impedance measuring instrument at a given temperature. This also allows extraction of the true C_{inv} free from any frequency dispersion. Extracting the true inversion charge as a function of gate voltage also enables us to link the gate voltage directly to the surface potential in the presence of a “frequency dependent threshold voltage (V_t) and flat band voltage (V_{fb}) shift”, whereas in [12] it is not possible to obtain the surface potential to gate voltage relationship unless V_t or V_{fb} is known precisely. Another common approach in literature to obtain energy location of the traps is from the interface trap time constant by assuming a particular capture cross-section [16]. However capture cross section values discussed in literature vary orders of magnitude (1×10^{-15} to 1×10^{-19} cm2) and assuming a particular capture cross-section for energy estimation is susceptible to errors. Further, in our model we also consider effects of series resistance (distributed channel resistance and lumped contact resistance) and gate leakage in addition to the D_n response while solving the equivalent circuit model. Solving the capacitance data together with the conductance data gives more accuracy in extracting the D_n and N_{inv} as the capacitance data is relatively less sensitive to parasitic resistance and gate leakage effects than the conductance data.

II. FACTORS AFFECTING SPLIT C-V MEASUREMENTS

In this section, we systematically explain the impact of distributed channel resistance, gate leakage and interface states on the admittance behavior of an In$_{0.53}$Ga$_{0.47}$As MOS transistor biased in weak and strong inversion.

A. Effect of Distributed Channel Resistance

Since the interface states in the upper half of the semiconductor band gap can respond to small signal AC frequencies in the split capacitance measurement, one minimizes the error either a) by increasing the small-signal measurement frequency or b) by lowering the temperature of measurement so that the interface traps cannot follow the fast changing AC signal. However, the distributed nature of the channel resistance comes into play at higher frequencies which causes the measured capacitance to be lower than the true capacitance, resulting in an under-estimation of N_{inv}. This is illustrated in Fig. 1(a) where the frequency dispersion in both C-V and G-V data is caused solely by the channel resistance. Physically, the distributed channel resistance accounts for the energy loss during the minority carrier transport between the source/drain at any given position in the channel. As the channel length increases the dispersion in C-V and G-V increases due to the increased channel resistance.

![Fig. 1. Effect of distributed channel resistance on (a) the C-V, and (b) the G-V characteristics. (c) Equivalent circuit of a MOSFET in strong inversion incorporating the channel resistance and ignoring the effects of interface states and gate leakage.](image-url)
B. Effect of Gate Leakage

In the case of ultra thin gate dielectric with significant gate leakage, we need to consider the effect of the tunnel conductance that shunts the oxide capacitance as well as the interface state capacitance. A direct impact of this increased tunnel conductance which appears in series with the channel and series resistance is shown in Fig. 2(a) where an increasing percentage of the AC test voltage appears across the channel resistance as gate leakage increases with higher V_g leading to a droop in the C-V characteristics. In Fig. 2(b), we show the effect of increased tunnel conductance on the G-V data where there is a linear monotonic increase in the measured conductance as the gate voltage is increased.

C. Effect of Interface States

Here we analyze the effect of interface states on the split C-V characteristics. The frequency dispersion in the C-V data caused by the D_i effect is shown in Fig. 3(a). A constant D_i distribution (1×10^{13} /cm2/eV) across the upper half of the bandgap is assumed as an illustrative example in this case to calculate the frequency dispersion in the C-V and G-V. The presence of D_i causes a frequency dependent “threshold voltage shift” in the C-V characteristics. At lower frequencies, the capacitance rises at lower V_g due to strong contribution from the midgap states, while at higher frequencies the midgap states cannot respond and the contribution comes primarily from the band edge states which are active at higher V_g. The conductance peak will also shift to higher V_g’s with higher frequencies as the band edge states get activated.

D. Effect of Channel Resistance, Gate Leakage, and Interface States

Finally, we show the combined effects of series contact resistance, distributed channel resistance, gate leakage and interface states on the C-V and G-V characteristics in the inversion regime in Figs. 4(a) and (b). We identify the various regimes marked as A, B, C and D in the G-V-f characteristics. In region A, at high gate voltage and low frequency, the measured conductance values are directly related to the tunneling conductance estimated from the DC gate leakage measurements. In region B, at high gate voltage and high frequency the series resistance (from contact resistance and distributed channel resistance) effect markedly increases the frequency dispersion of the measured conductance. It should be noted that in the high gate voltage regime as the Fermi level moves deep inside the conduction band the interface state conductance is negligible and the measured conductance is only the tunneling conductance estimated from the DC gate leakage measurements. In region C, at lower gate voltage and lower frequency, the conductance peak exhibits strong frequency dependence due to contribution from the near midgap states. In region D, at intermediate gate voltage and higher measurement frequency the conductance contribution comes from the band edge states. The equivalent circuit model is described comprehensively in the next section.

![Fig. 2. Effect of tunnel conductance due to gate to channel leakage on (a) the C-V, and (b) G-V characteristics. (c) Equivalent circuit of a MOSFET in strong inversion incorporating the tunnel conductance and the distributed channel resistance.](image)

![Fig. 3. Effect of interface states, D_i, on (a) the C-V characteristics, and (b) the G-V characteristics. The equivalent circuit model in inversion incorporating the effect of D_i is shown in the inset of (a).](image)

![Fig. 4. Effect of interface states, series resistance (contact and channel), and tunnel conductance on (a) the C-V characteristics, and (b) the G-V characteristics.](image)
III. THE EQUIVALENT SMALL SIGNAL MODEL

A standard LCR meter (HP4285A) was used to measure the capacitance (Split C-V) and conductance of n-MOSFETs with LaAlO₃ gate dielectric, as a function of frequency and voltage for a range of temperature from 300K till 35K. Measurements were made in parallel mode with a small signal AC amplitude of 25 mV. The equivalent model in inversion including all the effects is shown in Fig. 5.

The model incorporates several features which are currently absent in recent publications while extracting the true N_inv and D_inv, especially when the channel is close to inversion or inverted. For example, the first step in the formulation of the model is the inclusion of the fixed series resistance, R_contact, at the two ends of the channel. Also, due to the distributed nature of the inversion channel resistance, R_inv, we create a transmission line model to accurately reflect the effect of R_inv as well as the tunnel conductance of the oxide, G_tunnel, arising from gate leakage. The gate oxide or insulator capacitance, C_inv, is estimated from the maximum capacitance measured in accumulation on a MOS capacitor. We verify the validity of our C_inv estimation by comparing with physical measurements (cross section TEM) as well as from minimizing the error between the calculated and measured C-V / G-V data points across the frequency range during the extraction process. A closed form equation was derived to model the admittance of the circuit shown in Fig. 5.

The measured admittance between the gate and source/drain for the circuit shown in Fig. 5 is given by (2),

\[Y_m = G_m + j\omega C_m \]

where \(G_m \) and \(C_m \) are the measured conductance and capacitance respectively. \(C_m \) and \(G_m \) are given by (3) and (4),

\[C_m = \text{Re}[C' \tanh \lambda / \lambda] + (G_s / C_i \omega) \text{Im}[C' \tanh \lambda / \lambda] + (G_{\text{tunnel}} / \omega) \text{Im}[anh \lambda / \lambda] \quad [F/cm^2] \]

\[G_m / \omega = - \text{Im}[C' \tanh \lambda / \lambda] + (G_s / C_i \omega) \text{Re}[C' \tanh \lambda / \lambda] \]

\[+ (G_{\text{tunnel}} / \omega) \text{Re}[anh \lambda / \lambda] \quad [F/cm^2] \]

respectively. Here \(C' = [C_{\text{ox}} + C_{\text{i}} + G_s / j\omega] \), \(C_{\text{ox}} \) is the oxide capacitance in \(F/cm^2 \), \(C_{\text{t}} = C_{\text{inv}} + C_{\text{it}} \quad [F/cm^2] \), \(\lambda = \gamma E / 2 \), \(\gamma^2 = r \), \(r = r_0 C' + C_G / C_i + G_{\text{tunnel}} \), \(r_0 = (W / L) / g_{ds} \) [\(\Omega \)], \(G_{\text{tunnel}} = \partial g_{ds} / \partial V_g \) [S/cm²], and \(g_{ds} = [\partial I_d / \partial V_g] \) [\(\Omega \)]. The above model is derived based on [15] after including the effects of \(C_{\text{it}} \) and \(G_{\text{it}} \).

The admittance due to a distribution of interface traps is given by the capacitance, \(C_{\text{it}} \), and the conductance, \(G_{\text{it}} \), given by (5) and (6) respectively [13].

\[C_{\text{it}} = q \int \frac{D}{2 \omega^2} \tan^{-1} \omega \tau P \sigma_y E dE \quad [F/cm^2] \]

\[G_{\text{it}} / \omega = \frac{q}{2} \int \frac{D}{(1 + \omega^2 \tau^2) \omega^2} \sigma_y E dE \quad [F/cm^2] \]

A random spatial distribution of interface defects causes a spatial distribution in the band bending which is accounted by the integrand in (5) and (6) where, \(\tau \) is the interface trap time constant, \(\sigma_y \) is the surface potential fluctuation and \(P \) is a Gaussian distribution with variance of \(\sigma_y^2 \).

The effect of surface potential fluctuation was not considered in our analysis of \(C_{\text{it}} \) and \(G_{\text{it}} \). The transmission line equivalent circuit model was solved for \(\tau \), \(D_{\text{inv}} \) and \(C_{\text{inv}} \) using the algorithm explained below. The measured conductance and capacitance data from the split C-V measurement are converted to measured admittance data, \(Y_{\text{measured}} \). This admittance data is further corrected for contact resistance (obtained from transfer length method) as given by \(1 / Y_{\text{corrected}} = 1 / Y_{\text{measured}} \cdot R_{\text{contact}} / 2 \). The factor 2 in the above expression is due to the symmetry between source and drain in the split C-V measurement. This corrected data is now solved to obtain \(D_{\text{inv}}, \tau \) and \(C_{\text{inv}} \) over the entire frequency range as given by (7), at a particular bias point.

\[\sum_{\text{frequency}} Y_{\text{corrected}} \cdot Y_m(D_{\text{inv}}, \tau, C_{\text{inv}}) = 0 \]

![Fig. 5. Equivalent circuit model of MOSFET in weak and strong inversion: \(C_{\text{ox}} \) = oxide capacitance, \(G_{\text{tunnel}} \) = tunnel conductance, \(C_{\text{i}} \) = interface trap capacitance, \(G_s \) = interface trap conductance, \(C_{\text{it}} \) = semiconductor inversion capacitance, \(R_{\text{ox}} \) = the gate bias dependent inversion channel resistance, \(R_{\text{contact}} \) = series resistance associated with implanted source/drain regions, contacts and metal pads.](image)

![Fig. 6(a) Experimental C-V, and (b) experimental G-V data at 300K compared to the modeled data using the proposed equivalent circuit model.](image)
Here \(Y_n(D_n, \tau, C_{inv}) \) is the set of all possible solutions as per (2) for the range of \(D_n \), \(\tau \) and \(C_{inv} \) considered. The channel conductance, \(g_{dir} \), and the tunnel conductance, \(G_{tunnel} \), used in (2) are obtained from Id-Vd and Ig-Vg measurements respectively. This process is repeated over the entire bias points to obtain \(D_n \), \(\tau \) and \(C_{inv} \) as a function of voltage. Obtaining true inversion charge as a function of \(V_g \) enables a natural translation from gate bias to surface potential even in the presence of frequency dependent \(V_i \) and \(V_{fb} \) shift. This allows us to accurately express \(D_n \) as a function of energy. Figs. 6(a) and (b) show the 300K experimental C-V and G-V data compared to the solution obtained from our model which shows excellent agreement.

IV. EXTRACTING \(D_n \), \(\tau \) AND \(N_{inv} \)

Having confirmed the validity of the proposed equivalent circuit model, we proceed to extract the interface state density, its response time and the true inversion carrier density as a function of gate voltage. We apply our technique to a wide range of operating temperatures of the In\(_{0.53}\)Ga\(_{0.47}\)As MOSFET to extract the \(D_n \), \(\tau \) and true \(N_{inv} \) from 300K down to 35K.

Unlike the full conductance method, we can quantitatively extract the \(D_n \) over a wide range of energy at room temperature even though the precise location of the conductance peak, \((G_u/\omega)_{peak} \), is outside the measurement frequency range. Fig. 7 shows the equivalent parallel conductance of the interface traps as a function of gate bias and frequency. It can be seen that a subset of conductance peaks particularly at low gate bias which corresponds to midgap trap response is outside the measurement frequency range. However, on solving the equivalent circuit model, the \(D_n \) data is precisely extracted for low gate bias. The extracted \(D_n \) and \(\tau \) are shown in Figs. 8 (a) and (b). Fig. 8(b) also reveals the typical \(\lambda \)-shaped characteristic of the interface trap time constant, \(\tau(E) \). It is noteworthy that the \(D_n \) profile extracted independently from the measured C-V and G-V data at 3 different temperatures are consistent with each other. The \(D_n \) profile could be interpreted as sum of two Gaussian distributions with high and low peak values. The Gaussian

Fig. 7. Equivalent parallel conductance of the traps \((G_u/\omega) \) as a function of gate bias and frequency. The trace of the conductance peaks (shown in dotted red line) reflects the Fermi level movement.

Fig. 8. (a) Extracted interface state density versus energy, and (b) the extracted trap response time versus energy.

![Image](https://via.placeholder.com/150)

Fig. 9. (a) Extracted trap response time versus energy compared to the theoretical response time. (b) Experimental and theoretical (without \(D_n \)) sub-threshold slope and the interface state density extracted from the experimental sub-threshold slope as a function of temperature.

with the high peak spans across the midgap of the In\(_{0.53}\)Ga\(_{0.47}\)As semiconductor and is responsible for the sub-threshold slope (SS) degradation commonly observed in In\(_{0.53}\)Ga\(_{0.47}\)As based MOSFETs [14]. The second Gaussian distribution with lower peak extends towards and into the conduction band. Since this peak is much reduced, high on current in inversion is expected and has been experimentally reported for In\(_{0.53}\)Ga\(_{0.47}\)As MOSFETs [7]. In Fig. 9(a), we compare the extracted time constant at 3 different temperatures with the theoretical value calculated using the expression \(\tau = N_e \sigma v_{th} \exp(-\Delta E/kT) \) [13], where \(N_e \) is the effective conduction band density of states, \(\sigma \) is the capture cross section, \(v_{th} \) is the thermal velocity of electrons and \(\Delta E = E_c - E \) is the energy location of the trap with respect to the conduction band. Since we are analyzing the device in inversion we need to only account for the exchange of carriers with the minority band (i.e. conduction band for the p-type substrate). We get a strong agreement between the measured time constant and its theoretical estimate over a large range of energy and temperature, further validating our extraction...
In summary, we have presented here a comprehensive equivalent circuit model to analyze the true small signal response of inversion carriers in In0.53Ga0.47As MOSFETs with high-κ gate dielectric. Our approach attributes the frequency dispersion commonly observed in the C-V and the G-V measurement data of In0.53Ga0.47As MOSFETs quantitatively to various contributing factors such as the interface states, contact resistance, distributed channel resistance and the tunnel conductance. This allows us to self consistently solve for the frequency dependent interface state response and the frequency independent true inversion carrier density for a range of gate bias.

REFERENCES

Ashkar Ali (S’99) received the B.S. degree in materials science and engineering from the Indian Institute of Technology, Madras, India, in 2007 and M.S. degree in engineering science from the Pennsylvania State University, PA, in 2009. He is currently working toward the Ph.D. degree in electrical engineering in the Department of Electrical Engineering at the Pennsylvania State University, University Park.

His research interests include oxide and III-V interface characterization, and simulation, fabrication and characterization of narrow-gap quantum-well FETs for beyond silicon technology nodes.

Himanshu Madan (S’09) received the B.S. degree in electronics and telecommunication engineering from the College of Engineering Pune, India, in 2008. He is currently working toward the M.S. degree in electrical engineering in the Department of Electrical Engineering at the Pennsylvania State University, University Park.

His research interests include small signal response of minority and majority carriers in III-V channel FETs with high-k gate stacks up to gigahertz frequency domain.

Sergei Koveshnikov received his M.S. degree in semiconductor device and technology engineering from the Moscow Power Engineering Institute (Technical University) in 1981 and the Ph.D. degree in solid state physics from the Russian Academy of Sciences in 1992.

From 1992 to 1995 he was a post-doctoral research associate at the Department of Materials Science and Engineering of North Carolina State University. In 1995 he joined S.E.H. America where he worked for 7 years as a senior scientist and manager of materials characterization group. Currently, he is a senior engineer at Intel Corporation. For the last 5 years he is with Intel External Programs working as a research-in-residence at UT-Austin and U-Albany on research and development of high-k dielectrics gated MOS devices on Si and compound semiconductors for future logic applications.

Serge Oktaybrsky (SM) was born in Moscow in 1956. He received the M.S. degree in Physics and Engineering with honors from Moscow Institute of Physics and Technology in 1980, and the Ph.D. degree in Solid State Physics from Lebedev Physics Institute, Moscow, Russia, in 1988.

He is currently a professor and a leader of a photonics team at the College of NanoSciences and NanoEngineering, University at Albany-SUNY specializing in research and development of materials and structures for novel optoelectronic devices. From 1993 to 1998 he was a visiting scientist at North Carolina State University, and from 1978 to 1993 he was with Lebedev Physics Institute, Moscow, Russia, as a senior scientist and head of the electron microscopy group from 1988. He has a 25+ year experience in electronic materials, design, fabrication, and characterization of semiconductor electronic and photonic devices, and authored over 180 papers in these fields. His recent research activities focus on physics and technology of quantum confined structures, microcavity photonic devices and group III-V based MOSFETs.

Prof. Oktaybrsky is a senior member of IEEE, member of SPIE, Materials Research Society, American Vacuum Society, Microscopy Society of America.

Rama Kambhampati received the B.E. degree in electronics and communication engineering from the University of Madras, Chennai, India and the M.S. degree in nanoscale science and engineering from the University at Albany, Albany, New York in 2007. He is currently working towards the Ph.D. degree in the college of nanoscale science and engineering at the University at Albany – State University of New York.

His research interests include integration of high-k dielectrics with group III-V based channel materials for high performance, low power, digital logic applications.

Tassilo Heeg received his bachelor’s degree from the Institute of Bio- and Nano-Systems (IBN1-IT) at the Juéliech Research Centre. He received his Ph.D. degree (Dr. rer. nat.) from the University of Cologne. He is currently doing post doctoral studies in the Department of Materials Science at the Pennsylvania State University.

His research interests include high dielectric constant materials for microelectronic applications.

Darrell Schlom is a Professor in the Department of Materials Science and Engineering at Cornell University. He received a B.S. degree from Caltech, and M.S. and Ph.D. degrees from Stanford University. After a post-doc at IBM’s research lab in Zurich, Switzerland, he spent 16 years on the faculty at Penn State University prior to joining Cornell.

His research interests include alternative gate dielectrics and the heteroepitaxial growth and characterization of oxide thin films, including their epitaxial integration with semiconductors using MBE. He has published over 300 papers and 8 patents. He has been awarded invention achievement awards by IBM and SRC; young investigator awards by ONR, NSF, and the American Association for Crystal Growth; an Alexander von Humboldt Research Fellowship, and the ASM International Bradley Stoughton Award for Young Teachers.

Dr. Schlom is a Fellow of the American Physical Society and received the MRS Medal from the Materials Research Society for his work on high-K dielectrics.

Suman Datta (SM’06) received the B.S. degree in electrical engineering from the Indian Institute of Technology, Kanpur, India, in 1995 and the Ph.D. degree in electrical and computer engineering from the University of Cincinnati, Cincinnati, OH, in 1999.

He is an Associate Professor in the Department of Electrical Engineering, Pennsylvania State University, University Park. From 1999 to 2007, as a member of the Logic Technology Development and Components Research Group at Intel Corporation, he was instrumental in the demonstration of the world’s first indium-antimonide based quantum-well transistors operating at room temperature with a record power-delay product, the first experimental demonstration of metal gate plasmon screening and channel strain engineering in high-s/metal-gate CMOS transistors, and the investigation of the transport properties and the electrostatic robustness in nonplanar “trigate transistors” for extreme scalability. Since 2007, he has been with Pennsylvania State University as the Joseph Monkowsky Professor for Early Faculty Career Development, exploring new materials, novel nanofabrication techniques, and nonclassical device structures for CMOS “enhancement” as well as “replacement” for future energy-efficient computing applications. He is the author of over 65 archival refereed journal and conference papers and is the holder of 91 U.S. patents.