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Computing with networks of synchronous oscillators has attracted wide-spread attention as novel

materials and device topologies have enabled realization of compact, scalable and low-power

coupled oscillatory systems. Of particular interest are compact and low-power relaxation oscillators

that have been recently demonstrated using MIT (metal-insulator-transition) devices using proper-

ties of correlated oxides. Further the computational capability of pairwise coupled relaxation oscil-

lators has also been shown to outperform traditional Boolean digital logic circuits. This paper

presents an analysis of the dynamics and synchronization of a system of two such identical coupled

relaxation oscillators implemented with MIT devices. We focus on two implementations of the os-

cillator: (a) a D-D configuration where complementary MIT devices (D) are connected in series to

provide oscillations and (b) a D-R configuration where it is composed of a resistor (R) in series

with a voltage-triggered state changing MIT device (D). The MIT device acts like a hysteresis re-

sistor with different resistances in the two different states. The synchronization dynamics of such a

system has been analyzed with purely charge based coupling using a resistive (RC) and a capacitive

(CC) element in parallel. It is shown that in a D-D configuration symmetric, identical and capaci-

tively coupled relaxation oscillator system synchronizes to an anti-phase locking state, whereas

when coupled resistively the system locks in phase. Further, we demonstrate that for certain range

of values of RC and CC, a bistable system is possible which can have potential applications in asso-

ciative computing. In D-R configuration, we demonstrate the existence of rich dynamics including

non-monotonic flows and complex phase relationship governed by the ratios of the coupling imped-

ance. Finally, the developed theoretical formulations have been shown to explain experimentally

measured waveforms of such pairwise coupled relaxation oscillators. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4906783]

I. INTRODUCTION

Synchronization of systems of oscillators have attracted

widespread attention among physicists, mathematicians, and

neurobiologists alike. Even simple descriptions of oscillators

and their coupling mechanisms give rise to rich dynamics.

Synchronization dynamics of coupled oscillators not only

have a wide variety of applications in engineering1–3 but they

also explain many natural, chemical and biological synchroni-

zation phenomena like the synchronized flashing of fireflies,

pacemaker cells in the human heart, chemical oscillations,

neural oscillations, and laser arrays, to name a few.4 Coupled

sinusoidal oscillators have been extensively studied5–7 and

their application in the computational paradigm has been well

demonstrated.8,9 A generalized description of oscillators in

these models is usually a canonical phase model,4,10 and the

coupling mechanisms is generally assumed weak and com-

posed of simple periodic functions. Several studies on more

general periodic coupling functions have been studied.11

Along with sinusoidal oscillators, non-linear Van-der-Pol

oscillators and several of its variants have also been studied

and the applicability of such models in neurobiological and

chemical oscillators have been demonstrated.12–15 Such ana-

lytic models of coupled oscillatory systems almost always

require a canonical phase description of the oscillators and a

periodic phase dependent additive coupling that can be classi-

fied as weak. Although such a description of a system of oscil-

lators is elegant and provide key insights, relaxation

oscillators that have recently been demonstrated using phase

transition metal-insulator-transition (MIT) devices, cannot be

modeled using such a simple phase description. Prior work by

the authors have experimentally demonstrated locking and

synchronization in a pairwise coupled system of relaxation

oscillators2 and its possible application in computation has

also been discussed.1 The coupling behavior of relaxation

oscillators illustrate complex dynamical properties16 and in

this paper, we study the synchronization behavior of a pair of

identical and electrically coupled relaxation oscillators.2

Individual oscillators are composed of either two MIT devices

in series (D-D configuration) or a MIT device in series with a

linear resistor (D-R configuration)2 and electrical coupling is

enabled through a parallel connected R-C network. We show
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through analytical and numerical techniques how the final

steady state relative phase of such coupled oscillators depend

on the coupling function. For certain range of values of the

coupling function, we note the possibility of a bistable system,

where both in-phase and out-of-phase locking are stable,

thereby giving rise to the possibility of using such oscillatory

networks in computation.1,9

II. ELECTRICAL CIRCUIT MODEL AND
REPRESENTATION

An electrical circuit representation of the relaxation

oscillators is important to define the form of coupling which

is physically realizable. The basic relaxation oscillator

involves repeated charging and discharging of a capacitor

through a resistive path. Switching between charging and

discharging has to be done autonomously by the circuit con-

figuration. In this paper, we are concerned with the relaxa-

tion oscillators built using state-changing devices. Such

state-changing devices are fabricated using correlated oxide

(vanadium dioxide, V O2) and exhibit MIT where the device

switches between a metallic and an insulating state under the

application of heat or an electric field.17 Further details about

the physical implementation of these devices are discussed

in Sec. IX. We will consider two kinds of relaxation oscilla-

tor circuits using such state-changing devices-(a) two state-

changing devices in series (Figure 1). We will refer to this

configuration as D-D. And (b) a state changing device in se-

ries with a resistance (Figure 2).2 This configuration will be

referred to as D-R. The D-D configuration is enticing in its

simplicity, both in physical realization and analysis as will

be evident in Secs. III and IV. The D-R configuration, on the

other hand, has already been experimentally demonstrated2

and can be thought of as an extension of the D-D configura-

tion albeit with more complex dynamics of synchronization.

In this paper, we will first study the D-D configuration, using

analytical and numerical techniques; and show through

phase models and flow analysis some key results in the D-R

configuration.

The state transition of the device follows:

(a) Only the resistance of the device changes with its state;

and the resistance is linear;

(b) A state transition is triggered by the voltage across the

device. This triggering can be electric field driven or

thermally driven, and can be modeled as an equivalent

triggering voltage.2 When the voltage exceeds a higher

threshold vh, the state changes to a metallic (low resist-

ance) state and when the voltage exceeds a lower

threshold vl, the state switches back to the insulating

(high resistance) state. The thresholds vh and vl are not

equal, i.e., there is hysteresis in the switching with

vl< vh, and

(c) A capacitance is associated with the device that ensures

gradual build up and decaying of the voltage (and

hence energy) across the device vD.

The present study of the synchronization dynamics of

such coupled systems, although inspired by the experimental

realization of VO2 based oscillators, is not limited to these

oscillators only, but encompasses a class of similar pairwise-

coupled relaxation oscillators as well. The circuit equivalents

of single and coupled relaxation oscillators are shown in

Figs. 1–3, respectively. The internal resistance of the device

Rd has two different values in the two states of the device-Rdi

in the insulating (high resistance) state and Rdm in the metal-

lic (low resistance) state. C is the internal capacitance of the

MIT device (including any parasitic capacitances) and RS is

the series resistance. We will also assume that Rdi� Rdm. In

the D-D configuration, the capacitor being charged can be

FIG. 1. Relaxation oscillator circuit realized using two MIT state-changing

devices in series (D-D configuration), and its circuit equivalent with Rdm and

Rdi as the internal resistance of the MIT devices in metallic and insulating

states, respectively. When Rdi� Rdm the device behaves as a parallel combi-

nation of a capacitor and a resistor with a switch.

FIG. 2. Relaxation oscillator circuit realized with a MIT device in series

with a resistor (D-R configuration), and its circuit equivalent with Rdm and

Rdi as the internal resistance of the MIT device in metallic and insulating

states, respectively. When Rdi� Rdm the device behaves as a parallel combi-

nation of a capacitor and a resistor with a switch.

FIG. 3. Circuit equivalent of coupled D-D oscillators of with an RC circuit

used as the coupling circuit. For D-R oscillators, one state-changing resistor

of each oscillator is replaced by a constant linear resistor.

054902-2 Parihar et al. J. Appl. Phys. 117, 054902 (2015)
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represented as a single capacitor at the output circuit node.

The coupling circuit is a parallel combination of a capacitor

Cc and a resistor Rc. As shown, the output node of the oscil-

lator is between the device and the resistance, and the cou-

pling circuit is connected between these output nodes.2

III. MODEL DEVELOPMENT FOR ISOLATED AND
COUPLED OSCILLATORS

Before investigating the system dynamics, let us estab-

lish the system model and the system of differential equa-

tions that define the system. This will allow us to define the

conditions for oscillation as well as the coupling dynamics.

We will first consider D-D configuration and then D-R con-

figuration as an extension of the D-D configuration. The D-D

configuration, owing to its inherent symmetry renders to eas-

ier dynamics and analysis and provides valuable insights into

the system. Such key numerical and analytical results for this

are discussed in Secs. V, VI, and VII.

A. D-D configuration

The circuit equivalent for a D-D type relaxation oscilla-

tor is shown in Figure 1. For simplicity, all voltages are nor-

malized to vdd (including vl and vh). We define conductances

gdi ¼ R�1
di ; gdm ¼ R�1

dm, and gc ¼ R�1
C . For the conductances,

subscript d denotes a state dependent device conductance

and m/i denotes metallic/insulating state, respectively.

The subscripts preceding dm or di refer to the corre-

sponding numbered device as shown in figure. Also, it is

assumed that gdm � gdi, which means that the gdi state

essentially disconnects the circuit. This implies that the

effective charging happens through g1dm and effective

discharging through g2dm. The single D-D oscillator can

be described by the following set of piecewise linear dif-

ferential equations:

cv0 ¼ ðvdd � vÞg1dm charging
�v g2dm discharging;

�
(1)

where c is the lumped capacitance of both devices along

with the parasitics. The equation can be re-written as

cv0 ¼ �gðsÞvþ pðsÞ; (2)

where s denotes the conduction state of the device (0 for me-

tallic and 1 for insulating) and g(s) and p(s) depend on the

device conduction state s as follows:

gðsÞ ¼ g1dm; s ¼ 0

g2dm; s ¼ 1;

�
(3)

pðsÞ ¼ g1dm; s ¼ 0

0; s ¼ 1:

�
(4)

When two identical oscillators are coupled in a manner

described in Figure 3, the system can be described by the fol-

lowing coupled equations:

c1v01 ¼
ðvdd � v1Þg11dm � ic1 charging
�v1 g12dm � ic1 discharging;

�
(5)

c2v02 ¼
ðvdd � v2Þg21dm � ic2 charging
�v2 g22dm � ic2 discharging;

�
(6)

where c1 and c2 are the lumped capacitances of the oscilla-

tors. For conductances g, the first subscript denotes the oscil-

lator and the second denotes the device. ic1¼ –ic2 is the

coupling current given by

ic1 ¼ ðv01 � v02Þcc þ ðv1 � v2Þgc: (7)

When coupled, the system has 4 conduction states

s¼ s1s2 � {00, 01, 10, 11} corresponding to the 4 combina-

tions of s1 and s2. Analogous to (2), the coupled system can

be described in matrix form as

ccFx0 tð Þ ¼ �gcA sð Þx tð Þ þ P sð Þ;

x0 tð Þ ¼ � gc

cc
F�1A sð Þ x tð Þ � A�1 sð ÞP sð Þ

� �
; (8)

where x(t)¼ (v1(t), v2(t)) is the state variable at any time

instant t. The 2� 2 matrices F and A(s), and vector P(s) are

given by

F ¼ 1þ a1 �1

�1 1þ a2

� �
; (9)

Að00Þ ¼
�b11 � 1 1

1 �b21 � 1

" #
; Pð00Þ ¼

b11

b21

" #
;

Að10Þ ¼
�b12 � 1 1

1 �b21 � 1

" #
; Pð10Þ ¼

0

b21

" #
;

Að01Þ ¼
�b11 � 1 1

1 �b22 � 1

" #
; Pð01Þ ¼

b11

0

" #
;

Að11Þ ¼
�b12 � 1 1

1 �b22 � 1

" #
; Pð11Þ ¼ 0:

(10)

Here, ai¼ ci/cc is the ratio of the combined lumped ca-

pacitance of ith oscillator to the coupling capacitance cc, and

bij¼ gijdm/gc is the ratio of the metallic state resistance of jth
device of ith oscillator, where i � {1, 2} and j � {1, 2}. The

fixed point in a conduction state s is given by ps¼A–1(s)P(s)

and the matrix determining the flow (the flow matrix or the

velocity matrix) is given by gc

cc
F�1AðsÞ as can be seen in (8).

In Sec. V, we analyze the steady state locking and synchroni-

zation dynamics of two such identical oscillators coupled

with a parallel resistive and capacitive element as shown in

Figure 3.

B. D-R configuration

The equivalent circuit for a D-R type relaxation oscillator

is shown in Figure 2. As in the case of D-D configuration, vol-

tages are normalized to vdd. The conductances involved are

gdi ¼ R�1
di ; gdm ¼ R�1

dm; gs ¼ R�1
s , and gc ¼ R�1

C . Effective

charging happens through gdm as in the previous case but there

is an added leakage through gs, whereas effective discharging

054902-3 Parihar et al. J. Appl. Phys. 117, 054902 (2015)
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happens only through gs. Following the same methodology as

in the D-D case, the equation for the single D-D oscillator dy-

namics can be written as:

cv0 ¼ ðvdd � vÞgdm � v gs charging
�v gs discharging;

�
(11)

which can be re-written as

cv0 ¼ �gðsÞvþ pðsÞ; (12)

where

gðsÞ ¼ gdm þ gs; s ¼ 0

gs; s ¼ 1;

�
(13)

pðsÞ ¼ gdm; s ¼ 0

0; s ¼ 1;

�
(14)

and s denotes the conduction state of the system as before. In

case of coupled D-R oscillators, arguments similar to the

previous case lead to the same matrix equation as (8)

x0 tð Þ ¼ � gc

cc
F�1A sð Þ x tð Þ � A�1 sð ÞP sð Þ

� �
; (15)

where matrices F and P remain the same as before but matrix

A changes to the following:

F ¼ 1þ a1 �1

�1 1þ a2

� �
; (16)

Að00Þ¼
�b1�bs1�1 1

1 �b2�bs2�1

" #
; Pð00Þ¼

b1

b2

" #
;

Að10Þ¼
�bs1�1 1

1 �b2�bs2�1

" #
; Pð10Þ¼

0

b2

" #
;

Að01Þ¼
�b1�bs1�1 1

1 �bs2�1

" #
; Pð01Þ¼

b1

0

" #
;

Að11Þ¼
�bs1�1 1

1 �bs2�1

" #
; Pð11Þ¼ 0: (17)

Here, bi¼ gidm/gc and bsi¼ gsi.

For all numerical simulations in the rest of the paper, the

normalized values of vl and vh w.r.t vdd are chosen to be 0.2

and 0.8, respectively.

IV. PHASE SPACE, FLOWS AND OSCILLATION
CONDITIONS

A. Single Oscillators

A series arrangement of two MIT devices (D-D), or an

MIT device and a resistor (D-R) will oscillate only when

certain conditions are met. In case of two devices in series

(D-D), the two devices must be in opposite conduction states

(one metallic and the other insulating) all the time for oscil-

lations to occur. If the threshold voltages vl and vh are same

for the devices and the following condition holds:

vl þ vh ¼ VDD; (18)

and at t¼ 0 the devices are in different conduction states,

then any time one device switches, the other will make the

opposite transition as well. The basic mechanism of oscilla-

tions is as follows. The device in metallic state connects the

circuit and charges (discharges) the output capacitor, and the

other device in insulating state does not participate in the dy-

namics. As the capacitor charges, the voltage drop across the

device in metallic state decreases and crosses the lower

threshold vl. At the same instant, the voltage drop across the

other device in insulating state increases and crosses the

higher threshold vh because vD1þ vD2¼VDD. The devices

then switch states and the cycle continues. The devices can

be conceived as a switch which is open in insulating state

(ignoring any leakage in the insulating state) and closed in

metallic state (Figure 1). If vl and vh deviate from (18), the

devices will not switch at the same instant and oscillations

will stop as the system settles to a stable point where both

devices are in same state and the voltage of the output nodes

remains at VDD/2. This may require additional startup circuit

in the system, which is trivial to integrate.

In D-R configuration, another set of conditions have to

be met18 which depend on the relative values of the device

resistances in the two states (Rdm and Rdi) and the series re-

sistance (RS). These conditions can be described using the

phase diagram of the MIT device Figure 4. Lines with slopes

ri and rm are the regions of operation of the device in insulat-

ing and metallic states, respectively. The intersection of

these lines with the load line due to the series resistance

gives the stable points of the system in the two states. For

self-sustained oscillations, the stable points in each state

should lie outside the region of operation, i.e., outside the

FIG. 4. Phase space of the device in a single D-R oscillator. Lines with

slopes ri and rm are the regions of operation in insulating and metallic con-

duction states, respectively. The intersection of these regions with the load

line are the stable points in each region of operation. The transition points

should be encountered before reaching the stable points for sustained oscilla-

tions as shown.

054902-4 Parihar et al. J. Appl. Phys. 117, 054902 (2015)
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region defined by horizontal lines passing through the transi-

tion points. This ensures that the system always tries to reach

the stable point in the current state but is always preceded by

a transition to the other state. This moves the system towards

the stable point of the other state (away from the previous

stable point) and hence the system never reaches any stable

point and oscillates. This configuration is robust towards

deviation of vl and vh from condition (18) and as only one

device is involved, it does not require the difficult constraint

of simultaneous switching of devices as was in the D-D case.

This reduced requirement of symmetry is an attractive prop-

erty of the D-R configuration as initial experiments have

confirmed sustained oscillations in this configuration.2

We define the region of operation of a device (and hence

of an oscillator) as the region where the device voltage lies

between vl and vh (or the output voltage lies between 1� vl

and 1� vh). For the D-D case, the oscillators are expected to

remain within the region of operation all the time. However,

in the D-R case, the system can go outside the region of

operation in a specific manner as described later.

B. Coupled oscillators

For analyzing the coupled circuits, the phase diagram of

a coupled system can be drawn in the v1� i1� v2� i2 space

as was done in Figure 4. However, we note that in a given

conduction state of the system, s¼ s1s2, (v1, v2) can uniquely

identify the system, and hence, v1� v2 space is sufficient for

a phase diagram. Therefore, we can draw 4 different phase

diagrams of the system for each conduction state s (Figure 5)

with transitions among them16 (Figure 6). The transitions

occur at the edges when either v1 or v2 reach the higher or

lower threshold for state change from metallic to insulating

or vice versa. The flows in each of the 4 conduction

states are linear flows and hence have a single fixed point

(Figure 5). The conditions for oscillations can be described

using Figure 7. Analogous to the case of a single oscillator,

these stable points should lie outside the region of operation

(in the shaded region) in a way that the system always tries

to move towards these stable points but should be preceded

by a state transition which occurs when the system reaches

the (red) dashed lines.

1. Monotonic flows and periodic orbits

The conditions of Figure 7 are general enough to hold

for both D-D and D-R configurations and they ensure that

the system does not settle down to a stable point and voltages

across oscillators repeatedly increase and decrease.

However, these conditions do not ensure the existence of a

stable orbit which can give periodic oscillations. To ensure

existence of a stable periodic orbit, we consider additional

conditions for the systems. For D-D configuration, we con-

sider systems where the flows in the states are monotonic,

i.e., v1 and v2 are either constantly increasing or constantly

decreasing in the region of operation of any conduction state.

Figure 6 show these monotonic directions with the state tran-

sitions for D-D coupled oscillator configurations. It is proved

later that for two identical coupled D-D oscillators, this con-

dition of monotonicity of the flows is sufficient for existence

of a stable orbit and hence for periodic oscillations. For D-R

coupled oscillators, we consider systems where either the

direction of flows are strictly monotonic as shown in Figure

FIG. 5. The coupled system can be described by 4 different phase spaces for

each state s¼ s1s2. This figure shows the system flows of the D-D and D-R

coupled oscillator system in the 4 regions of operation along with the fixed

points (shown as red dots) in each state. This figure also represents the sim-

plified case where the flows are monotonic within the region of operation.

FIG. 6. Schematic representation showing the monotonic flow directions in

the regions of operation in the simplified model. The monotonicity condition

is sufficient for existence of a steady state periodic orbit in the D-D case.

Transitions are shown among the 4 states 1(MM), 2(IM), 3(MI), and 4(II) of

the coupled system when the system reaches any edge, i.e., the voltage of

any oscillator reaches a phase change threshold of its MIT device.

FIG. 7. The stable points of both D-D and D-R coupled oscillator system

should lie in the yellow shaded region for the system to oscillate. The system

undergoes a transition to another state when the system hits the red dashed

lines.
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6 or are non-monotonic in a very specific way as discussed

in Sec. VII (see Figure 23). In this case, periodic oscillations

can be ensured for certain conditions as described in Sec.

VII. It should be noted here that in the D-R case, the system

can also go outside the region of operation as seen in Figure

8(b), but if the fixed points lie in the above mentioned shaded

regions, the system will always oscillate. Figure 8 shows typ-

ical time-domain waveforms and corresponding phase-space

trajectories for the coupled oscillators of the D-D and D-R

types.

V. SYMMETRIC D-D COUPLED OSCILLATOR
DYNAMICS

Let us first investigate the case when the D-D oscillators

are identical and their effective charging and discharging

rates are equal, i.e., b11¼b21¼b12¼ b22¼ b and a1¼ a2.

This corresponds to a well designed and ideal oscillator sys-

tem where the pull-up and pull-down device resistances have

been matched to create equal charging and discharging rates.

In such a scenario the velocity matrices in the four conduc-

tion states gc

cc
F�1AðsÞ become equal. As such, the state spaces

in the four conduction states can be represented in a common

state space with the system flow described by the common

velocity matrix and a single fixed point. However, in this

common state space, the regions of operation in the four con-

duction states will be four distinct regions. The position of

these regions for a conduction state would depend on the

position of its respective fixed points in the original state

space. Such a combined phase space is shown in Figure 9.

The symmetry of the system is apparent in the flow as

well. The eigen values k1, k2 and eigen vectors e1, e2 of the

velocity matrix gc

cc
F�1A of the symmetric system are

k1 ¼ �
gc

cc

b
a

� �
; k2 ¼ �

gc

cc

bþ 2

aþ 2

� �
; (19)

e1 ¼
1

1

� �
; e2 ¼

�1

1

� �
: (20)

Real negative eigen values imply that the flow of the sys-

tem is symmetric about both the eigen vector directions (i.e.,

a mirror image of itself about the eigen directions) as shown

in Figure 10. The stable fixed points in the conduction

states 1(00), 2(01), 3(10), and 4(11) are p1 ¼ ð1; 1Þ;

FIG. 8. Simulation waveforms with time (left) and the system trajectory in

phase space (right) of a system of coupled oscillators of type (a) D-D and (b)

D-R. The steady state periodic orbit is shown in red. The butterfly shaped

steady state trajectory corresponds to waveforms similar to anti-phase lock-

ing. The solid and dashed lines represent output of the two oscillators.

FIG. 9. Combined phase space in the symmetric D-D coupled oscillator case

showing 4 regions of operation of the four different conduction states such

that all states share a single fixed point p. This is possible as the flow matri-

ces in all the four states are equal and, hence, all state spaces can be repre-

sented in a single space with a single flow but occupying different regions.

FIG. 10. In the combined phase space, the flow of the coupled system is a

mirror image of itself about its eigen vector directions e1 and e2 as the eigen

values are real and negative. This symmetry of the flows can be reduced and

the state space of the system can be described by considering just one-fourth

of this space as shown in Figure 11.
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p2 ¼ 1� 1
2þb ;

1
2þb

	 

; p3 ¼ 1

2þb ; 1� 1
2þb

	 

, and p4¼ (0, 0),

respectively. Hence, the line along the eigen vector e1 is the

diagonal for both conduction states 1 and 4. Under the

assumption that the vdd normalized thresholds vl and vh are

symmetric, i.e., vl¼ 1� vh, the line along e2 also becomes the

diagonal for states 2 and 3. This is because the fixed points of

conduction states 2 and 3—p2 and p3 lie on xþ y¼ 1 line in

their original state spaces which is same as the eigen direction

e2. It should now be noted that the transitions between the

conduction states, the regions of operation and the flow, all

have the same common discrete symmetry—mirroring about

e1 and e2. We can do a symmetry reduction at this point and

the system can be completely described by just two states and

two transitions (Figure 11(a)).

To study the steady state periodic orbits of this system,

we calculate the return map on the left edge of state 1 in

Figure 11(a) which is f¼ f1 � f2. In this case, any periodic

orbit in the symmetry reduced space will correspond to

at least one periodic orbit in the complete space (see

Figure 13). Also, if no fixed point of the return map exist in

the symmetry reduced space, then there is definitely no peri-

odic orbit in the complete space. The coordinate measure-

ments on the edges are defined as shown in Figure 11b. f1: x1

! y1 is the mapping from the left edge of state 1 to its top

edge and f2: x2! y2 is the mapping from left edge of state 2

to its bottom edge. x1, x2, x3, and x4 are defined on their re-

spective edges as shown in Figure 11(b). As both the eigen

values k1 and k2 are real and negative, f1(x) will lie above

x¼ y line and f2(x) will lie below it. A representative plot of

f1, f2 and f¼ f1 � f2 (i.e., the return map f: x1 ! y2) is shown

in Figure 12, where dv¼ vh–vl. The composition f¼ f1 � f2
lies above x¼ y if f2 is more curved than f1 and vice versa.

As the return map is always increasing, only the first return

map needs to be considered for finding fixed points and the

higher return maps do not add new fixed points. When the

coupling is more capacitive, the composition function tends

to be concave as shown in Figure 12(a). Proposition 1 gives

a mathematical form to this notion where a sufficient

condition is proved for anti-phase locking. We show numeri-

cally with simulations in Figure 15 the conditions for in-

phase locking compared to anti-phase locking.

If the system moves from any arbitrary point on the

flow, say (xa, ya) to another point, (xb, yb) in time t then the

following implicit equation can be written:

xa þ ya

xb þ yb

� � 1
k1 ¼ xa � ya

xb � yb

� � 1
k2

: (21)

In state 1, (xa, ya) lies on the left edge and (xb, yb) lies

on the top edge. To define f1: x1 ! y1, we substitute

(xa, ya)¼ (�vh, �vhþ x1) in (21) and obtain an implicit equa-

tion for f1 as

2vh � x1

2vl þ y1

� �
¼ x1

y1

� �aþ2
bþ2

b
a

: (22)

FIG. 11. (a) Symmetry reduced space (fundamental domain) of the coupled

system after reducing the symmetries shown in Figure 10. f1 is the mapping

from the left edge of state 1 to its top edge and f2 is the mapping from left

edge of state 2 to its bottom edge. (b) Definition of x1, x2, y1, and y2 on the

edges of the states in the symmetry reduced space.

FIG. 12. Representative plot of mappings f1, f2 and their composition

f¼ f1 � f2 with fixed b and varying a. Here, dv¼ vh–vl. b> a is a sufficient

condition for a concave f and hence stable anti-phase locking. As a
increases, the curve for f transitions into a s-shaped curve with both in-phase

and anti-phase lockings stable, and then finally to a convex curve with stable

in-phase locking.

FIG. 13. The trajectories (which are periodic orbits) corresponding to the

fixed points in the return maps of Figure 12(b). (a) The unstable fixed point

of Figure 12(b) corresponds to two periodic orbits in the unreduced space as

shown in red. (b) The fixed point at 0 corresponds to a single periodic orbit

shown in blue and the fixed point at dv corresponds to the green periodic

orbit. When the initial state of the system lies in the gray region (shown in

(a)), the system settles down to an in-phase locking state, and otherwise to

an anti-phase locking state.
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Similarly, an implicit equation for f2: x2 ! y2 can be

written as

kb þ x2

kb � y2

� �
¼ dv� x2

dv� y2

� �bþ2
aþ2

a
b

; (23)

where kb ¼ b
bþ2

.

Equations (22) and (23) can be solved numerically to

obtain the steady state orbits of the system.

Proposition 1: Existence of stable periodic orbit and suf-
ficient condition for stable anti-phase locking in symmetric
D-D coupled oscillator system: For b > a > 2dv

1�dv ¼ dv
vl

, i.e.,
gdm

gc
> c

cc
> 2dv

1�dv ¼ dv
vl

the coupled symmetric and identical sys-

tem has only two steady state locking orbits—in-phase and

anti-phase. Further, the in-phase locking is unstable and the

anti-phase locking is stable.

Proof: The proof can be divided in two steps-(a)

There are only two fixed points of f-at 0 and at dv, and (b)

f 0ð0Þ > 1 and f 0ðdvÞ < 1 which implies that the in-phase

locking is unstable and anti-phase locking is stable.

The first part is proved as follows:

As k1 and k2 are negative, x1> y1 and dv� x2> dv� y2.

And as b > a > 2dv
1�dv ;

aþ2
bþ2

b
a > 1 and bþ2

aþ2
a
b < 1. Also b > 2dv

1�dv

implies kb> dv> y2. This gives us the following

inequalities:

2vh � x1

2vl þ y1

� �
� x1

y1

� �
(24)

and
kb þ x2

kb � y2

� �
� dv� x2

dv� y2

� �
; (25)

where the equality holds at the end points, i.e., at x1¼ 0 and

x1¼ dv for (24) and at x2¼ 0 and x2¼ dv for (25). At any

fixed point for the return map f, x1¼ y2 and y1¼ x2 and Eqs.

(24) and (25) should be consistent with these fixed point

equations. Substituting x1¼ y2 and y1¼ x2 in (24) and (25),

we get

dv� dv� y1ð Þ þ y2ð Þ þ 2 dv� y1ð Þy2

dvþ kb
� 0; (26)

dv� dv� y1ð Þ þ y2ð Þ þ dv� y1ð Þy2

vh
� 0: (27)

These equations are consistent only when

dv� y1ð Þy2

2

dvþ kb
� dv� y1ð Þy2

1

vh
; (28)

which in turn can be true only at the end points, i.e., y1¼ 0

or y1¼ dv, because kb< 1. It can be confirmed that this is

indeed the case by inspection of Figure 11.

The second part of the proof is proved by calculating

f 0ð0Þ ¼ f 01ð0Þ � f 02ð0Þ. f 01ð0Þ and f 02ð0Þ are calculated from (22)

and (23) as

f 01 0ð Þ ¼ vl

vh

� �q

; (29)

f 02 0ð Þ ¼ ka þ dv

ka � dv
¼ ka þ vh � vl

ka � vh þ vl
>

vh

vl
; (30)

where q ¼ bþ2
aþ2

a
b < 1 and ka ¼ a

aþ2
. Also a > 2dv

1�dv implies

ka> dv. Hence,

f 0 0ð Þ ¼ f 01 0ð Þ � f 02 0ð Þ > vh

vl

� �1�q

> 1: (31)

And as f has no other fixed points between 0 and dv and

f is continuous, f 0ðdvÞ < 1. Hence, proved.

It should be noted that this condition is not a strict bound

but rather provides key design insights when a particular

form of coupling (anti-phase) is sought.1

A. Capacitive, resistive coupling and bistability

The two extreme cases of purely resistive and purely

capacitive coupling are of interest. In case of coupling using

only a capacitor, the symmetric and identical coupled system

always has a stable anti-phase and an unstable in-phase lock-

ing. This is because in case of purely capacitive coupling,

FIG. 14. Capacitive coupling leads to anti-phase locking and resistive cou-

pling leads to in-phase locking in case of symmetric D-D coupled oscilla-

tors. The solid and dashed lines represent output of the two oscillators.

FIG. 15. Return map type for the symmetric D-D case in the parametric

space, b� a for vl¼ 0.2 and vh¼ 0.8. We can clearly see that for b> a the

return map is concave and anti-phase locking is stable. Also when the cou-

pling is more resistive, the return map becomes convex with stable in-phase

locking. The region between concave and convex return map is the region

with S-shaped return map with both stable in-phase and stable anti-phase

locking.
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b!1 and so b> a for all finite a. Even in practical cases

where some parasitic resistance is included in parallel with

the coupling capacitor,2 b is typically much larger than a.

Such anti-phase locking matches well with recent experi-

mental findings of capacitively MIT coupled oscillators

as discussed in Ref. 1. In case of coupling using only a

resistor, the symmetric and identical coupled system will

have a stable in-phase and an unstable anti-phase orbit,

as can be predicted from Figure 15 for a ! 1. Time

domain simulations of the coupled systems with purely

capacitive and purely resistive coupling are shown in

Figure 14. The parameter values for capacitive coupling

are a¼ 5 and b¼ 6 and those for resistive coupling are

a¼ 13.1 and b¼ 3.6.

Figures 12(b) and 12(c) show cases when b< a. In the

intermediate case when the return map transitions from con-

cave to convex, the system goes through a state where both

in-phase and anti-phase locking are stable with one unstable

fixed point in between (Figure 12(b)). In Figure 15, the two

regions for concave and convex return map can be clearly

seen. They are separated by a thin region which represents

the case of bistability. Figure 16 shows the time domain sim-

ulation waveforms of oscillator outputs for b¼ 3.6 and

a¼ 13.1. We note that the initial voltage of the first oscillator

is 0.2 V and depending on the initial voltage of the second

oscillator, the system can either lock in phase or out of

phase. These design parameters correspond to a bistable sys-

tem of the kind shown in Figure 12(b), and hence the final

steady state locking is in-phase or out-of-phase depending on

the initial phase of the system. When the initial phase (or

output voltage) of oscillators are close to each other (repre-

sented by gray region in Figure 13(a)) the system locks in-

phase, and when they are far the system locks out-of-phase

for the same circuit parameters.

VI. ASYMMETRIC D-D COUPLED OSCILLATOR
DYNAMICS

Let us now investigate the case of D-D oscillator dy-

namics where the two oscillators are identical but the pull-up

and pull-down devices are non-identical thereby giving rise

to asymmetric charging and discharging rates. As the oscilla-

tors are identical, b11¼b21¼bc and b12¼ b22¼ bd, where

subscripts c and d stand for charging and discharging. The

symmetry of the system (due to the identical oscillators) can

be seen in the flows of the states. Flows of conduction states

1(00) and 4(11) are mirror images about the diagonal x¼ y
and the flow in conduction state 2(10) is equivalent to the

flow in state 3(01) with axes x and y interchanged. This sym-

metry is also shown in the transitions between states. The

system can be expressed after reducing the symmetry as in

Figure 17. For bc<bd, two kinds of cycles are possible in

the regions 1! 2b! 1 and 1! 2c! 4! 2a! 1. To find

the fixed points of the system, we draw the return map with

the bottom edge of state 1 as the Poincare section. Let f1 be

the mapping from bottom edge of conduction state 1 to its

right edge, and f2a, f2b, and f2c are the mappings between

edges in conduction state 2 as shown. Also, let f1ðx0kÞ ¼ xk

and f2b(0)¼ yk as shown in Figure 18. For small asymme-

tries, the flows remain monotonic and also yk > x0k. Because

it is a symmetry reduced space, we consider the first return

map for trajectories of the type 1 ! 2c ! 4 ! 2a ! 1 and

the second return map for trajectories of the type 1! 2b! 1.

Then, the return map f is given by

f ðxÞ ¼
f1 � f2c � f4 � f2aðxÞ; 0 � x < x0k
f1 � f2b � f1 � f2bðxÞ; x0k � x < dv:

�
(32)

FIG. 16. Simulation waveforms showing the dependence of final locking to

the initial state of the system in the intermediate case of Figure 12(b) when

the return map is S-shaped. The solid and dashed lines represent the two

oscillators. Initial v1¼ 0.2 V in both cases, but the system locks in-phase

when initial v2¼ 0.4 V, and anti-phase when initial v2¼ 0.6 V. With refer-

ence to Figure 13, the initial point (0.2, 0.4) lies in the gray region and the

point (0.2, 0.6) lies outside the gray region in conduction state 1.

FIG. 17. Symmetry reduced space in the asymmetric D-D configuration

with bc>bd (left) and bc<bd (right). Such configuration will have only a

single symmetry. The flow matrices in the four conduction states are not

equal and hence states cannot be represented in a single combined state

space with a single fixed point as was done in the symmetric D-D case

(bc¼bd).

FIG. 18. Diagram of symmetry reduced state spaces for conduction states 1

and 2 in the asymmetric D-D configuration. In conduction state 2, the top-

left corner does not map to the bottom-right corner as was the case in the

symmetric D-D case. The width of this middle region where the flow maps

the top edge to the bottom edge is defined using xk and yk.
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Proposition 2: Sufficient conditions for existence of sta-
ble periodic orbit in asymmetric D-D coupled oscillator sys-
tem: If in a D-D asymmetric coupled oscillator system the

asymmetries are small enough such that the flows are mono-

tonic and yk > x0k, then the following are true about the

return map f on the bottom edge of state 1:

(a) f is continuous

(b) f 0ð0Þ > 1 for bc> a and bd> a
(c) f has one fixed point at 0 and at least one in the interval

x0k < x < dv at, say, xf

(d) Either the fixed point at xf is stable, or there exists a

stable fixed point at x0f , where 0 � x0f < xf

Proof: (a) The return map is separately continuous in

intervals 0; x0kÞ
�

and ðx0k; dv	 as it is a composition of map-

pings of continuous flows. The continuity of f at xk can be

established by considering two points close to x0k on either

side. From (32), we can see that f ðx0kþÞ ¼ f ðx0k�Þ ¼ yk, and

hence, f is continuous at xk.

(b) It can be proved by similar procedure as adopted

before in Proposition 1 that f 0ð0Þ ¼ f 01ð0Þ � f 02cðdvÞ � f4ð0Þ �
f 02að0Þ > 1 for bc> a and bd> a.

(c) The fixed point at 0 can be seen clearly in the flow

diagram. In interval x0k < x < dv, the fixed points of first

return f1 � f2b will also be the fixed points of second return

(which is f), but not the other way around. Now f1 � f2bðx0kÞ
¼ dv and f1 � f2b(dv)¼ yk. As f1 � f2b is continuous, and hence

decreasing, in the interval x0k < x < dv, there exists a

fixed point for f1 � f2b, and hence for f, in the interval

x0k < x < dv.

(d) As f is continuous and has fixed points at 0 and xf,

one of these two should be stable if there is no other fixed

point in between 0 and xf. If they both are unstable, then a

stable fixed point exists in the interval (0, xf). Hence, proved.

Figure 19 shows a representative return map for the

asymmetric D-D configuration. The poincare section chosen

in the symmetric D-D case was the left edge of conduction

state 1. Due to symmetry, the left edge of conduction state 1

is same as the bottom edge of conduction state 1. Hence, the

return maps in the symmetric D-D case can be compared

with the return maps in the asymmetric D-D case as if they

were drawn on the same edge. Figure 20 shows a comparison

of the return maps of a symmetric case (bc¼ bd¼ 60,

a¼ 10) with that of two asymmetric cases (bc¼ 50 and 40,

bd¼ 60, a¼ 10). The corresponding time domain waveforms

and phase plots are shown in Figure 21. The figure clearly

shows that the steady state periodic orbit changes from a di-

agonal (perfect anti-phase locking) to a butterfly shaped

curve (imperfect anti-phase locking) as the asymmetry

FIG. 19. Representative plot of the return map on the bottom edge of con-

duction state 1 in the asymmetric D-D case. The fixed point corresponding

to anti-phase locking which was at dv in the symmetric case is shifted inside

away from dv in the asymmetric case.

FIG. 20. Comparison of return maps in the symmetric (a) and asymmetric

((b) and (c)) D-D configurations for constant a¼ 10. Both symmetric and

asymmetric configurations have a fixed point at 0 corresponding to in-phase

locking (which is unstable here as b> a condition is satisfied) along with

another fixed point, which in symmetric case, is at dv (perfect anti-phase

locking) but in asymmetric case shifts away from dv.

FIG. 21. Time domain waveforms and phase plots corresponding to the con-

figurations in Figures 20(a)–20(c). The steady state periodic orbits can be

seen clearly in the phase plots to transform from a diagonal (perfect anti-

phase locking) in the symmetric case (a) to a butterfly shaped curve (imper-

fect anti-phase locking) as the asymmetry increases and the anti-phase fixed

point in the return map shifts away from dv.
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increases. However, the time domain waveforms for butterfly

shaped periodic orbits would still be very similar in appear-

ance to anti-phase locking. The fixed point close to dv in the

return map shifts away from dv as the difference between bc

and bd increases. This trend can be seen in Figure 22 which

shows the movement of the anti-phase fixed point with bd–bc

for fixed bd¼ 60 and a¼ 10. For bc>bd, the cycles will be

of the type 4! 2b! 4 and 1! 2c! 4! 2a! 1, and the

return map will have to be drawn on an edge of state 4. The

return map in this case will be analogous to the bc<bd case

with bc and bd interchanged.

VII. D-R COUPLED OSCILLATOR DYNAMICS

In this section, we consider the dynamics of a D-R

coupled system. This is of interest because of its ease of fab-

rication, relaxed conditions for oscillations and already pub-

lished reports of such coupled oscillatory systems.2 We

consider coupling of identical oscillators and hence, we

define b1¼ b2¼b and bs1¼bs2¼ bs. Unlike the D-D

coupled oscillator case, the notion of symmetric charging

and discharging does not apply in D-R coupled oscillator

case because the circuit by construction is different for

charging and discharging. During charging a part of the net

charging current charges up the output capacitor whereas the

rest of it flows through the pull-down resistance to ground.

The process of discharging has no such leakage component.

In terms of the conductance ratio b, this can be explained by

the fact that the net charging component in the matrix A is

(bþ bs) and it is always greater than the discharging compo-

nent bs. However, the flows can still be simplified for analy-

sis as was described in Sec. IV. The simplification assumes

that the flows are monotonic in the regions of operation in all

four conduction states, but the direction of monotonicity is

different from the D-D coupled oscillator case as shown in

Figure 6. For our analysis, a particular type of non-

monotonicity is allowed in state 2 (and state 3) as shown in

Figure 23. Here, the fixed point for conduction state 2 satis-

fies the condition of oscillation shown in Figure 7, but the

flow in state 2 as shown in the symmetry reduced space

(Figure 23) is non monotonic. We will consider the case of

identical oscillators, and following the methodology of the

asymmetric D-D case, we can reduce the symmetry of identi-

cal oscillators as shown in Figure 23. In this case, two kinds

of cycles are possible - 4! 2b! 4 and 4! 2c! 4a! 4.

To find the fixed points of the system, we draw the return

map on the top edge of conduction state 4 as the Poincare

section. Let f4 be the mapping from top edge of state 4 to its

left edge, f4a be the mapping from the extended right edge of

state 4 to its top edge, f2a, f2b, and f2c be the mappings

between edges of state 2. Also let f4ðx0kÞ ¼ xk and f2b(0)¼ yk

as shown in Figure 24. We consider the scenario when the

flows of the system are as shown in Figure 23 and yk > x0k.

Because it is a symmetry reduced space, we will have to con-

sider the second return map for cycles of the type 4! 2b!
4 but only the first return map for 4 ! 2c ! 4a ! 4 type

cycles. Then, the return map f is given by

f ðxÞ ¼ f4 � f2c � f4aðxÞ; 0 � x < x0k
f4 � f2b � f4 � f2bðxÞ; x0k � x < dv:

�
(33)

Proposition 3: Sufficient conditions for existence of sta-
ble periodic orbit in D-R coupled oscillator system: If in a

D-R coupled oscillator system, the flows are as shown in

Figure 23 and yk > x0k then the following are true about the

return map on the top edge of state 4 in the symmetry

reduced state space (Figure 23)

FIG. 22. Numerical simulations illustrating the fixed point close to dv shifts

away from dv with increasing difference between bc and bd in the asymmet-

ric case.

FIG. 23. Symmetry reduced space in the D-R coupled oscillator system.

There is only a single symmetry due to identical oscillators.

FIG. 24. Symmetry reduced space for the D-R coupled oscillator system in

states 1 and 4 with the definition of xk, x0k , and yk. f4 is the mapping from top

edge of state 4 to left edge of state 4 and f2a, f2b, and f2c are mappings

between edges of state 2 as shown.
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(a) f is piece-wise continuous with discontinuity at x0k.

Moreover, f ðx0kþÞ ¼ yk and f ðx0k�Þ ¼ dv.

(b) f has at least one fixed point in the interval x0k < x < dv
at, say, xf.

(c) f has at least one stable fixed point in the interval

x0k < x < dv.

Proof: (a) The argument is the same as in Proposition 2.
The return map is separately continuous in intervals 0; x0kÞ

�
and ðx0k; dv	 as it is the composition of continuous flows.

From (33), we can see that f ðx0kþÞ ¼ yk and f ðx0k�Þ ¼ dv.

(b) In the interval x0k < x < dv, the fixed points of the

first return map f4 � f2b will also be the fixed points for its

second return map (which is f). Now f4 � f2bðx0kÞ ¼ dv and

f4 � f2b(dv)¼ yk. As f4 � f2b is continuous (and hence decreas-

ing) in this interval, there exists a fixed point for f4 � f2b, and

hence f, in the interval x0k < x < dv.

(c) As f ðx0kþÞ ¼ yk, f is continuous in the interval x0k <
x < dv and f has a fixed point at xf where x0k < xf < dv,

hence either the fixed point at xf is stable or there exists

another fixed point in the interval x0k < x < xk which lies in

x0k < x < dv. Hence proved.

Figure 25 shows the return map f on the top edge of state

4 for the D-R coupled oscillator system for varying bs. The

return maps in the figure have a single stable fixed point at xf

in the interval x0k < x < dv. The movement of the fixed point

xf with bs is shown in Figure 26. Another important design consideration for the coupled

oscillator system, is the role of the coupling circuit on the

overall system dynamics, as is seen in Figure 27. We note

that as the value of a increases the phase diagram in the

v1� v2 plane shows strong sensitivity. In particular, for low

values of a, the system shows in-phase locking. As a
increases (for intermediate value of a), the butterfly shaped

phase plot widens and the system exhibits a non-monotonic

decrease in the output voltages, v1 and v2 from vh to vl. This

can also be seen in the time domain waveforms where the

output voltages first decrease to an intermediate voltage,

then increase and again decrease; clearly demonstrating four

possible conduction states (MM, MI, IM, and II) in both

phase and time domain plots. Finally, for high values of a
the butterfly in the phase plot opens even further, thus mak-

ing the decrease of output voltages from vh to vl more mono-

tonic and the system tends to anti-phase locking, as exhibited

in both phase and time (Figure 27).

VIII. OTHER POSSIBLE DYNAMICS AND INSTABILITY

For sustained oscillations, the fixed points of the flows

should lie outside the region of operation in all the system

configurations that have been discussed. When the fixed

points lie inside the region of operation, the oscillations stop

and the system settles down at the fixed points. In the case of

sustained oscillations, the symmetric D-D coupled oscillator

system always has a monotonic flow and a stable periodic

orbit. For the other two cases of asymmetric D-D and D-R

coupled oscillator systems, we have explored sufficient con-

ditions for stability, namely, the existence of monotonic

flows and yk > x0k. But when these conditions are not satis-

fied, the system might not have a stable periodic orbit. For

FIG. 25. Return map on the top edge of state 4 for the D-R coupled oscilla-

tor system for a¼ 1, b¼ 150 and bs values of 10, 15, and 20.

FIG. 26. Movement of the fixed point xf for fixed a¼ 1, b¼ 150 and varying

bs for the return map on the top edge of state 4 for the D-R coupled oscillator

system.

FIG. 27. Steady state waveforms and phase trajectories for the D-R coupled

oscillator system with a¼ 0.1 (top), a¼ 1 (middle), and a¼ 10 (bottom).

The solid and dashed lines represent the two oscillators.
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asymmetric D-D coupled oscillator case, the conditions of

monotonicity and yk > x0k hold for small asymmetries, i.e.,

small difference between b and bs. For large asymmetries,

these conditions may be violated and more complex system

dynamics evolve. On the other hand, in the D-R coupled

oscillators, the conditions of monotonicity and yk > x0k hold

for large differences in b and bs, and for smaller differences,

the conditions may be violated. In either case, when these

conditions do not hold, the system might have periodic orbits

with more than 4 transitions per period or no periodic orbit

with irrational rotation numbers.16

IX. EXPERIMENTAL VERIFICATION

An MIT device can be realized using VO2 (Vanadium

dioxide) which exhibits unique electronic properties like

metal-insulator phase transitions. VO2 has been shown to

undergo abrupt first order metal-to-insulator and insulator-

to-metal transitions with up to five orders of change in con-

ductivity19 and ultra-fast switching times.17 The time con-

stants using discrete circuit elements are usually high1 due to

the effect of parasitic elements. Faster time constants of sub-

100 fs have been experimentally demonstrated in monolithi-

cally integrated correlated material oscillator devices20,21

Moreover, it has been reported that the phase transition (i.e.,

IMT and MIT) in correlated materials like vanadium dioxide

(VO2) fundamentally occurs on extremely fast time-scales

(
75 fs).22,23 The expected time constants for electrically

induced phase transition in scaled VO2 devices have also

been investigated in Ref. 17. These phase transitions occur at

time scales that are a few orders of magnitude smaller than

the RC time constants in the oscillator circuit (Figure 29).

Transitions have been shown to be electrically driven, ther-

mally driven or a combination thereof. Recent work shows

that for such a transition, a metallic filament structure is

formed which acts as a conduction pathway in the low resist-

ance state of VO2.24 Also, a series circuit of VO2 with a resis-

tive pull down network has been shown to exhibit self-

sustained electrical oscillations2 when conditions of oscilla-

tions as described above are met. Moreover, two such relaxa-

tion oscillators can be electrically coupled to produce

synchronized oscillations.2 For experimental validation, we

apply our models of coupled relaxation oscillators on a

system of two coupled VO2 oscillators. Figure 28 shows a

schematic representation of the coupled circuit with a paral-

lel resistance (RC) and capacitance (CC) as the coupling cir-

cuit. Frequency domain results of this system have been

previously reported2 showing a close match between experi-

ments and theoretical results of a D-D model; and are not

reproduced here. Using the D-R model developed in this pa-

per, we obtain close match in the time-domain and phase

plots of the oscillator system as well. With proper calibration

of the system parameters, the D-R model described above

shows very close qualitative match with experimental

results. One such experimental result has been shown in

Figure 29 along with model prediction. This validation of the

proposed models enables further design of experiments. It

further models and explains both qualitative and quantitative

the role of the system design parameters on the rich synchro-

nization dynamics.

X. CONCLUSIONS

This paper presents a model study of the synchroniza-

tion dynamics of a pair of identical and electrically coupled

relaxation oscillators when physically realized using MIT

devices. Experimental realization of such devices1,2 has

motivated the study of their dynamics, with emphasis on

phase synchronization, locking conditions and potential pro-

grammability of the phase relations using electrical means.

We investigate the case of a purely MIT based oscillator

(D-D) and that of a hybrid oscillator composed of an MIT

device and a passive resistance (D-R configuration). We

show through numerical and analytical techniques, validated

against experimental results, the existence of out-of-phase

locking (in purely capacitive coupling), in-phase locking (in

purely resistive circuits) and the possibility of bistable cir-

cuits (for intermediate values of R and C). This opens new

paradigms for realizing associative computing networks

FIG. 28. Schematic of the experimental setup of coupled VO2 oscillators,

with series resistances Rs1 and Rs2, respectively, coupled using a parallel

RC–CC circuit.

FIG. 29. Experimental and simulated time domain waveforms in the steady

state and phase plots for a parallel RC–CC coupled oscillator system. The D-

R coupled relaxation oscillator model is used for model development and

simulation. The two waveforms show close match and validate the model

prediction.
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using coupled oscillators by enabling model studies of such

physically realizable circuit elements.

ACKNOWLEDGMENTS

N.S. and S.D. acknowledge funding from the Office of

Naval Research through Award No. N00014-11-1-0665.

S.D. would also like to acknowledge funding, in part, from

the NSF Expeditions in Computing Award-1317560. A.P.

and A.R. would like to acknowledge the generous gift of

Intel Corporation which made this work possible.

1S. Datta, N. Shukla, M. Cotter, A. Parihar, and A. Raychowdhury, “Neuro

inspired computing with coupled relaxation oscillators,” in Proceedings of
the 51st Annual Design Automation Conference on Design Automation
Conference (ACM, 2014), pp. 1–6.

2N. Shukla, A. Parihar, E. Freeman, H. Paik, G. Stone, V. Narayanan, H.

Wen, Z. Cai, V. Gopalan, R. Engel-Herbert et al., “Synchronized charge

oscillations in correlated electron systems,” Sci. Rep. 4, 1–6 (2014).
3N. Shukla, A. Parihar, M. Cotter, M. Barth, X. Li, N. Chandramoorthy, D.

G. Schlom, V. Narayanan, A. Raychowdhury, and S. Datta, “Pairwise

coupled hybrid vanadium dioxide-mosfet (hvfet) oscillators for non-

boolean associative computing,” presented December 2014 at the IEDM,

Tech. Dig.-Int. Electron Devices Meet. 2014, 673–676.
4F. D€orfler and F. Bullo, “Exploring synchronization in complex oscillator

networks,” preprint arXiv:1209.1335 (2012). Presented as a tutorial at

the 51st IEEE Conference on Decision and Control. Available at : http://

control.ee.ethz.ch/~floriand/docs/Slides/Tutorial_CDC_Dorfler_Bullo.pdf.
5A. T. Winfree, “Biological rhythms and the behavior of populations of

coupled oscillators,” J. Theor. Biol. 16(1), 15–42 (1967).
6Y. Kuramoto, “Self-entrainment of a population of coupled non-linear

oscillators,” in International Symposium on Mathematical Problems in
Theoretical Physics (Springer, 1975), pp. 420–422.

7Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Courier

Dover Publications, 2003).
8D. E. Nikonov, G. Csaba, W. Porod, T. Shibata, D. Voils, D.

Hammerstrom, I. A. Young, and G. I. Bourianoff, “Coupled-oscillator

associative memory array operation,” preprint arXiv:1304.6125 (2013).
9E. M. Izhikevich, “Computing with oscillators,” CiteSeerX (2000). Available

at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1937.
10E. Mallada and A. Tang, “Synchronization of weakly coupled oscillators:

Coupling, delay and topology,” J. Phys. A: Math. Theor. 46(50), 505101 (2013).

11J. A. Acebr�on, L. L. Bonilla, C. J. P�erez Vicente, F. Ritort, and R. Spigler,

“The kuramoto model: A simple paradigm for synchronization phenom-

ena,” Rev. Mod. Phys. 77(1), 137 (2005).
12R. H. Rand and P. J. Holmes, “Bifurcation of periodic motions in two

weakly coupled van der pol oscillators,” Int. J. Non Linear Mech. 15(4),

387–399 (1980).
13D. W. Storti and R. H. Rand, “Dynamics of two strongly coupled van der

pol oscillators,” Int. J. Non Linear Mech. 17(3), 143–152 (1982).
14A. Kouda and S. Mori, “Mode analysis of a system of mutually coupled

van der pol oscillators with coupling delay,” Int. J. Non Linear Mech.

17(4), 267–276 (1982).
15T. Chakraborty and R. H. Rand, “The transition from phase locking to drift

in a system of two weakly coupled van der pol oscillators,” Int. J. Non

Linear Mech. 23(5), 369–376 (1988).
16T. Saito, “On a coupled relaxation oscillator,” IEEE Trans. Circuits Syst.

35(9), 1147–1155 (1988).
17A. Kar, N. Shukla, E. Freeman, H. Paik, H. Liu, R. Engel-Herbert, S. S. N.

Bharadwaja, D. G. Schlom, and S. Datta, “Intrinsic electronic switching

time in ultrathin epitaxial vanadium dioxide thin film,” Appl. Phys. Lett.

102(7), 072106 (2013).
18C.-L. Hu, “Self-sustained oscillation in an RH-C or RH-L circuit containing

a hysteresis resistor rH,” IEEE Trans. Circuits Syst. 33(6), 636–641

(1986).
19L. A. Ladd and W. Paul, “Optical and transport properties of high quality

crystals of {V2O4} near the metallic transition temperature,” Solid State

Commun. 7(4), 425–428 (1969).
20M. D. Pickett and R. Stanley Williams, “Sub-100 fj and sub-nanosecond

thermally driven threshold switching in niobium oxide crosspoint nano-

devices,” Nanotechnology 23(21), 215202 (2012).
21Q. Gu, A. Falk, J. Wu, L. Ouyang, and H. Park, “Current-driven phase os-

cillation and domain-wall propagation in WxV1-xO2 nanobeams,” NANO

Lett. 7(2), 363 (2007).
22A. Cavalleri, Th. Dekorsy, H. H. W. Chong, J.-C. Kieffer, and R. W.

Schoenlein, “Evidence for a structurally driven insulator-to-metal transi-

tion in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16),

161102 (2004).
23C. K€ubler, H. Ehrke, R. Huber, R. Lopez, A. Halabica, R. F. Haglund, Jr.,

and A. Leitenstorfer, “Coherent structural dynamics and electronic correla-

tions during an ultrafast insulator-to-metal phase transition in VO2,” Phys.

Rev. Lett. 99(11), 116401 (2007).
24E. Freeman, G. Stone, N. Shukla, H. Paik, J. A. Moyer, Z. Cai, H. Wen, R.

Engel-Herbert, D. G. Schlom, V. Gopalan et al., “Nanoscale structural

evolution of electrically driven insulator to metal transition in vanadium

dioxide,” Appl. Phys. Lett. 103(26), 263109 (2013).

054902-14 Parihar et al. J. Appl. Phys. 117, 054902 (2015)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.118.37.148 On: Tue, 24 Mar 2015 21:52:53

http://dx.doi.org/10.1038/srep04964
http://arxiv.org/abs/1209.1335
http://control.ee.ethz.ch/~floriand/docs/Slides/Tutorial_CDC_Dorfler_Bullo.pdf
http://control.ee.ethz.ch/~floriand/docs/Slides/Tutorial_CDC_Dorfler_Bullo.pdf
http://dx.doi.org/10.1016/0022-5193(67)90051-3
http://arxiv.org/abs/1304.6125
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.1937
http://dx.doi.org/10.1088/1751-8113/46/50/505101
http://dx.doi.org/10.1103/RevModPhys.77.137
http://dx.doi.org/10.1016/0020-7462(80)90024-4
http://dx.doi.org/10.1016/0020-7462(82)90014-2
http://dx.doi.org/10.1016/0020-7462(82)90026-9
http://dx.doi.org/10.1016/0020-7462(88)90034-0
http://dx.doi.org/10.1016/0020-7462(88)90034-0
http://dx.doi.org/10.1109/31.7575
http://dx.doi.org/10.1063/1.4793537
http://dx.doi.org/10.1109/TCS.1986.1085968
http://dx.doi.org/10.1016/0038-1098(69)90888-6
http://dx.doi.org/10.1016/0038-1098(69)90888-6
http://dx.doi.org/10.1088/0957-4484/23/21/215202
http://dx.doi.org/10.1021/nl0624768
http://dx.doi.org/10.1021/nl0624768
http://dx.doi.org/10.1103/PhysRevB.70.161102
http://dx.doi.org/10.1103/PhysRevLett.99.116401
http://dx.doi.org/10.1103/PhysRevLett.99.116401
http://dx.doi.org/10.1063/1.4858468

